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Abstract

Trajectory Similarity Based Prediction for Remaining Useful Life Estimation (126

pp.)

The degradation process of a complex system may be affected by many unknown

factors, such as unidentified fault modes, unmeasured operational conditions,

engineering variance, environmental conditions, etc. These unknown factors not only

complicate the degradation behaviors of the system, but also lower the quality of the

collected data for modeling. Due to lack of knowledge and incomplete measurements,

certain important context information (e.g. fault modes, operational conditions) of

the collected data will be missing. Therefore historical data of the system with a large

variety of degradation patterns will be mixed together. With such data, learning a

global model for Remaining Useful Life (RUL) prediction becomes extremely hard.

This has led us to look for advanced RUL prediction techniques beyond the traditional

global models.

In this thesis, a novel RUL prediction method inspired by the Instance Based

Learning methodology, called Trajectory Similarity Based Prediction (TSBP), is

proposed. In TSBP, the historical instances of a system with life-time condition

data and known failure time are used to create a library of degradation models. For a

test instance of the same system whose RUL is to be estimated, similarity between it

and each of the degradation models is evaluated by computing the minimal weighted

Euclidean distance defined on two degradation trajectories. Based on the known

failure time, each of the degradation models will produce one RUL estimate for the

test instance. The final RUL estimate can then be obtained by aggregating the

multiple RUL estimates using a density estimation method.
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A case study using the turbofan engine degradation simulation data supplied by

NASA Ames is provided to study the performance of TSBP. In this study, the TSBP

method has demonstrated significant improvement in performance over a Neural

Network based prediction method.
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1 Introduction

“Prognostics and Health Management is a system engineering discipline

focusing on detection, prediction, and management of the health and

status of complex engineered systems.” — the first International

Conference on PHM, 2008

In the past decade, engineering system Prognostics and Health Management

(PHM) has gained more and more attention in academia and industry. PHM has

envisioned a new business trend that is elevated from the traditional Reliability-

Centered Maintenance (RCM) and Condition-Based Maintenance (CBM) practices.

Among the many subjects within the scope of PHM, prognostics is no doubt the most

fundamental one. Its outcome builds the foundation of other PHM components,

such as optimal scheduling of operation, maintenance, logistics, etc. A successful

prognostics application has great impact on cost reduction, availability and safety

assurance, and accomplishment of critical missions.

In general, prognostics can be referred to as the detection of failure precursors

and predicting how much time remains before a likely failure [Schwabacher and

Goebel, 2007], that is, the Remaining Useful Life (RUL). While the detection of failure

precursors is mostly application dependent and requires background knowledge to the

system, RUL prediction is relatively independent. The techniques for RUL prediction

are mostly common to all prognostics applications, which will be the focus of this

thesis.

1
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1.1 Motivation

Being a rapidly developing research filed, the research on RUL prediction has

embraced a vast number of techniques and algorithms that come from multiple

research field, such as reliability engineering, regression analysis, time series modeling,

artificial intelligence, etc. Most of the existing algorithms for RUL prediction learn

a global prediction model from the data. These global models can be effective in

applications that involve only simple systems or isolated components, where the

system’s degradation behavior can be well characterized by simple hypotheses or

established knowledge. For complex systems, successful stories of prognostics are still

rare. This can be attributed to two fundamental issues during the development and

deployment of RUL prediction techniques:

• Lack of knowledge to the system’s failure mechanisms and fault modes;

• Incomplete context information of the collected data.

For complex systems, it is costly, time-consuming, and probably infeasible to

fully understand the system’s dynamics and employ the first-principle models for

prognostics. In such situations, data-driven techniques that rely on the discovery

of failure precursors buried in the collected condition data become the only choice.

When a data-driven model developed and tested under controlled experiments or lab

conditions is going to be deployed in the field, it has to face the challenges brought

up by the complexity of the real-world system.

Many real-world systems, such as machine tools, wind turbines or aircraft engines,

consist of a large number of components, which, while worn out, may cause different

degradation behaviors for the system and lead to different fault modes. When

limited knowledge to the system is available and no effective diagnostic tools exist to

support fault identification, those fault modes of the system that are not identified

2
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will become an unknown factor that causes diversified degradation patterns in the

collected condition data, which will only be perceived as noise or uncertainty for RUL

modeling. In addition to fault modes, more unknown factors can be expected for a

complex system. The system may operate under dynamically changing conditions;

if not measured adequately, it will become another unknown factor that elevates

data variation. Other potential unknown factors include engineering variance,

environmental conditions, human factors, etc.

These unknown factors not only complicate the degradation behaviors of the

system, but also lower the quality of the collected data for modeling. Due to lack of

knowledge and incomplete measurements, certain important context information (e.g.

fault modes, operational conditions) of the collected data will be missing. Historical

cases of the system with large variety of degradation patterns and incomplete context

information will be mixed together, which poses great challenge for RUL modeling.

It becomes very hard for a global prediction model trained from such data to deliver

good performance. This has led us to look for advanced RUL prediction techniques

beyond the basic prediction methods.

One solution is to employ the common ensemble modeling techniques in machine

learning, such as boosting, bagging, to enhance the model performance. These

methods produce a complex prediction model consisting of multiple local models,

whose internal mechanisms are hard to interpret. Another solution is to employ the

Instance-Based Learning (IBL) or Case-Based Reasoning (CBR) methodology and

develop models that are intrinsically built on a large number of historical cases. Due to

the advancement of sensing and communication technologies, massive data collection

from machines and equipment in the field, such as commercial aircraft engines or

heavy-duty mining machines, becomes feasible. The abundant life-cycle condition

data collected from multiple instances of the system has enabled the utilization of the

3
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second solution, i.e. the instance-based RUL prediction approach.

The past research on IBL/CBR for engineering applications mainly focuses on

diagnostics; the several applications on prognostics seldom utilize the information

of degradation data as a means to evaluate instance similarity. Therefore there is

still a research gap in utilizing IBL for prognostics applications. This has motivated

the work in this thesis on the development of Trajectory Similarity Based Prediction

(TSBP) approach, a novel RUL prediction approach based on the IBL methodology.

1.2 Objective and methodology

The objective of this research is to develop an effective RUL prediction

methodology that can address the following issues in prognostics applications of

complex engineering systems:

• Lack of knowledge of the system’s failure mechanisms and fault modes;

• Incomplete context information of the collected data.

The research involves the following tasks:

• Establish the RUL prediction framework and methodology

• Find the best practices to tune model parameters

• Benchmark with other RUL prediction techniques through case studies.

Specifically in this thesis, the TSBP method is developed to fulfill the research

goals. The method uses historical condition data from multiple training instances

with known failure time to build a library of degradation models. For a test

instance, similarity between it and each of the degradation models in the library

are evaluated based on the distance metric defined for two degradation trajectories.

Each degradation model will produce one RUL estimate for the test instance based on

4



www.manaraa.com

the known failure time of the model. The multiple RUL estimates will be aggregated

based on the similarity score to make the final RUL prediction.

1.3 Contributions and broader impacts

The key intellectual contributions of this thesis are highlighted below:

1. Developed an effective RUL prediction method that addresses multiple

challenges in complex system prognostics;

2. Derived three similarity metrics between degradation trajectories, which enrich

the IBL methodology in prognostics applications;

3. Developed a multi-regime data normalization method for data preprocessing,

especially a variable weighting method applied as preparation to the regular

Principal Component Analysis.

In addition, a solid case study is provided in this thesis to fully explore the strength

and weakness of the developed methodology. TSBP has demonstrated effective

prediction capability for complex system RUL estimation and noticeable improvement

compared with the traditional Neural Network based prediction method.

The TSBP method developed in this thesis is expected to have a broader impact to

industry. TSBP can be widely applied in engineering system prognostics applications

where persistent data collection from a large number of identical machines or

equipment are performed, such as for aircraft engines, heavy-duty mining trucks,

wind farms and so on. Effective RUL predictions provided by the TSBP method will

have great impact on the reduction of unplanned downtime and cost, safety assurance,

and accomplishment of critical missions in such applications.

1.4 Thesis layout

The thesis will be organized as follows.
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Chapter 2 discusses the basic issues and common techniques for prognostics

and RUL prediction. Many RUL prediction techniques will be reviewed and

summarized. Then performance evaluation methods and metrics for RUL prediction

will be presented. At last, the common challenges in prognostics application will be

summarized.

Chapter 3 brings forward the TSBP methodology, including the prognostics

framework and key procedures. The assumptions made by the TSBP method will

be discussed.

Chapter 4 discuss the data preparation method, which is a facilitating procedure

under the TSBP prognostic framework. The focus will be put on the case that

the data are collected under dynamic operational conditions. A multi-regime health

assessment approach and a multi-regime data normalization approach are presented.

Chapter 5 gives a case study of TSBP on Turbofan engine degradation

simulation data. The method to determine TSBP model parameters are presented.

The algorithm performance is evaluated using a four-step hierarchical evaluation

framework. At last, benchmarking results from the Neural Network approach is

shown.

Chapter 6 summarizes the developed TSBP methodology and restates the

contributions and broader impacts of the research work. Further more, a few

comments on TSBP are made and the future works are laid out.
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2 Issues and Techniques for RUL

Prediction

In this chapter, the various issues, concept and terms related to prognostics and

RUL prediction will be explained. The state-of-the-art technologies will be reviewed.

The common challenges for RUL prediction will be discussed.

2.1 Prognostics and RUL prediction

Usually, Prognostics is defined as the detection of failure precursors, and the

prediction of remaining useful life [Saxena et al., 2008a]. Detection of failure

precursors can be considered as health assessment, the computation of the system’s

health states or health indices. RUL refers to the time left (from present) before

a certain failure criteria is reached. It has several synonyms such as residual life,

remnant life, time to failure, etc., from various research field. Based on its definition,

prognostics in general requires two types of techniques: (a) the application-dependent

techniques to detect failure precursors or to estimate the system’s health state, and

(b) the prediction techniques to predict RUL. While system health state estimation

is mostly application dependent, RUL prediction is common in many prognostics

applications. In this thesis, the focus will be put on RUL prediction techniques while

the first type of techniques will be touched only when necessary.

RUL prediction is a type of event prediction that is related to but different from

health state prediction. In many cases, RUL prediction needs to predict the health

state far into the future until the failure criteria is reached. In some literature,

the short-term prediction of the system’s future health state without evaluating the

failure criteria is also referred to as Prognostics. The predicted health state, however,
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conveys only vague information regarding to the severity of the condition. It is not

as actionable as time-to-failure for the purpose of predictive maintenance scheduling.

The reason for this is easy to understand. If the progression characteristics of the

health state is not fully understood, predictions on the health state may under- or

over-estimate the actual severity of the system’s health condition. As illustrated by

Fig. 2.1, a system (a) whose current or near-term future state is far away from

the failure threshold is not necessarily more critical than system (b) whose state is

closer to the failure threshold, because system (b) may deteriorate with a slower

rate towards the failure threshold. For example, an application of structure health

prognostics employs crack length prediction techniques. The crack length shows the

state of fault at a certain time point; as long as the predicted crack length does not

cross the failure threshold yet, it is hard to decide whether one should repair or replace

the structure at a certain future time point. RUL prediction, on the contrary, already

taking into account the degradation progression pattern, provides a more straight-

forward health indicator (i.e. the RUL) that can be more easily utilized for decision

making.

In addition, in case of unobservable or ambiguously-defined health state (e.g.

a virtual health index without direct physical meaning. See also Section 2.4.2),

the information conveyed by state predictions is even more vague. In fact, the

maintenance paradigm based on predictions of the system’s future state does

not fundamentally change the traditional CBM paradigm. Therefore defining

prognostics through RUL prediction is helpful to distinguish PHM from the traditional

maintenance paradigms.
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Figure 2.1: RUL prediction provides richer information about the system’s health

state. A state closer to the failure threshold (case b) does not necessarily imply

higher criticality than a state farther away from the failure threshold (case a).

2.2 Failure and failure criteria

A definition of failure is critical for RUL prediction. In general, failure can be

defined as the loss of ability to perform the required function. Depending on the

needs of different applications, failure can be defined as

• A hard/physical failure, e.g. broken parts in the system, or,

• A soft failure, e.g. the system fails to meet the requirement of reliability level.

The failure time can be decided either

• Explicitly by a mathematically-defined failure criteria, e.g. a threshold, or,

• Implicitly based on the historical cases that are ”‘claimed”’ to have failed.

In the first case, the failure criteria can also be defined in different ways. It

can be defined as exact thresholds (as shown in Figure 2.1) on individual variables
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or a function of them; or it can be defined as a probabilistic threshold based on

the requirements of system reliability. The failure criteria can be given as a design

specification; otherwise it has to be estimated from the historical cases of failures.

Claim of failure can follow the First-Passage-Time [Whitmore, 1986] model as used

in reliability analysis, i.e., a failure is claimed when the detected system’s state passes

the threshold for the first time; or it can be decided by multiple passages in consecutive

measurements using, such as, Sequential Probability Ratio Test (SPRT) [Wald, 1945].

The failure criteria is required by the RUL prediction methods based on health state

prediction discussed in Section 2.4.3 and 2.4.4.

In the second case, the failure time of the monitored system is not decided based on

a single or multiple measurements or health state predictions; instead, it is estimated

from the failure time of the historical failed cases of the system. The historical

cases can be claimed to fail by a certain failure criteria not provided explicitly to

RUL prediction (e.g. from the controller whose internal logics is unknown). In some

situations, the failure time can be decided by subjective judgment. For example, the

recorded time of system overhaul, or the time of a certain major maintenance action

can be treated as the failure time. The implicitly provided failure criteria can be

utilized by the many direct RUL estimation approaches discussed in Section 2.4.5.

RUL prediction always use the defined failure condition as reference. RUL

prediction cannot be used to estimate the extra life beyond the failure reference.

For instance, corrective maintenance is always applied to a system based on a certain

reliability requirement and the system has never operated beyond that reliability

threshold. If the point of corrective maintenance is defined as the failure point (a soft

failure), then RUL prediction will not be able to provide a reliable life estimate with

reference to a hard failure beyond the reliability threshold.
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2.3 Scope of RUL modeling

RUL prediction is meaningful only for those engineering systems with evolving

degradation behaviors. Usually it does not apply to the system with stochastic failures

such as certain electronic components. For many engineering systems, especially

mechanical systems, the degradation process is irreversible unless the condition is

recovered by effective maintenance actions. The irreversible degradation process of a

system does not necessarily imply monotonic progression of the observed features of

the system though. For instance, RMS of a bearing’s vibration amplitude may not

be monotonic increasing during wear.

RUL modeling focuses the long-term, slow characteristics of the degradation

process. Thus the local, short-term behavior of the system can be treated as

disturbance. Catastrophic failures caused by unpredictable events will not be

considered. Infant failures (the system fails premature during run-in period), though

important for reliability analysis, are usually not modeled for RUL prediction

purposes either.

Usually RUL modeling does not model the effect of major preventive maintenance

actions within the prediction horizon. Preventive maintenance may change the

degradation progression of a system dramatically by recovering the system’s health

or performance to a new level, which is usually unpredictable. Unless a prediction

model is specially designed for this application, the effect of preventive maintenance

will be treated as noise in the degradation process.
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2.4 Review of RUL prediction techniques

2.4.1 Classification of RUL prediction techniques

Being a rapidly developing subject, the research on RUL prediction has employed

a vast number of techniques in multiple research areas, such as regression analysis,

time series forecasting, statistical survival analysis, Artificial Intelligence, etc. These

techniques can be classified into three categories, representing three levels of

prognostics (a classification method adapted from Vachtsevanos et al. [2006]): model-

based approaches, data-driven approaches and experience-based approaches, as shown

in Figure 2.2. The approaches towards the top of the pyramids incur higher cost in

development, deliver higher accuracy and is more application specific.

Increase in

Model Based
Level 1

Increase in
cost and 
accuracy

Model-Based
Approach

Level 2

Data-Driven
Approach

Experience-Based
Approach

Level 3

pp

Range of Applicability

Figure 2.2: Three-level classification of RUL prediction techniques (adapted from

Vachtsevanos et al. [2006, p.289])

Both the model-based approaches and the data-driven approaches rely on state

prediction followed by failure criteria evaluation, which includes two essential
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procedures: 1) estimating the system’s health state (health index, degradation stage,

etc.), and 2) predicting or extrapolating the system’s state up to the time when

the failure criteria is satisfied. The difference is that the model-based approaches

make predictions through physics models or system models, while the data-driven

approaches make predictions through data models learned from the time series

of states through regression/trend analysis or stochastic process modeling. These

approaches require an explicit failure criteria provided a priori. If not, it has to be

first estimated from the given data of failure cases.

The experience-based approaches estimate RUL directly by modeling the relations

between the states, the current life and the failure time, without an explicit failure

criteria.

Common RUL prediction approaches falling into these three categories are

summarized in Table 2.1.

2.4.2 State estimation

State estimation is required by many RUL prediction approaches as a preparation

stage, except for those approaches relying on feature-level predictions. Here, system

state is characterized by a continuous health indicator/index or discrete degradation

stages. The health indicator is usually a continuous-value quantity defined with one

of the following methods:

Physical health indicator is directly defined by a physical parameter of the system,

such as crack length in a gear, or the vibration amplitude of a shaft. The threshold

can be decided by the design specification.

Probabilistic health indicator is defined by a certain probability, e.g. the system’s

reliability defined in the Proportional Hazard Model [Banjevic and Jardine, 2006],

or the probability of the current system being in a healthy condition evaluated by
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Table 2.1: Summary of RUL prediction approaches
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logistic regression models [Yan et al., 2004], or the T-square statistics [MacGregor

and Kourti, 1995] on process novelty. The value of this health indicator is between 0

and 1, with 1 meaning the best (or the worst, depending on the definition) state of

the system. The threshold of this type of health indicator can be set by a statistical

confidence level.

Mathematical health indicator is defined by a variable with only mathematical

meaning, such as a certain distance metric, e.g. Mahalanobis distance, Minimal

Quantization Error in a Self-organizing Map (e.g. in Huang et al. [2007]), L2 distance

between distributions (e.g. in Liu et al. [2007]); it can be virtually any scalar

value transformed from the multi-dimensional feature space. The residual generated

in Model-based FDI (see also Section 2.4.3.2) can be treated as a mathematical

health indicator. Similarly, the residual generated by the Multivariate State

Estimation Techniques (MSET) [Cheng and Pecht, 2007] is another mathematical

health indicator. The threshold for this type of health indicator have to be learned

from training data set, or specified heuristically.

Discrete degradation stages of a system are required by certain modeling

techniques such as the Hidden Markov Models (see Section 2.4.4.5). They may be

defined empirically, mathematically or based on physics. They can also be obtained

by discretization of the continuous-value health indicators.

2.4.3 Model-based approaches

The model-based approach is a modeling paradigm for system state estimation

and prediction. Although first-principle models are most frequently used in these

methods to model the mechanism of the system’s state progression, they are not

the only models that can fit into the model-based modeling paradigm. A certain

data-driven, mathematical models can also be used in this paradigm.
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2.4.3.1 Modeling using Physics-of-Failure

Physics of Failure (PoF) modeling is usually applied at material level or component

level, and derived from wear or failure mechanism. A typical PoF model for

mechanical components is the fault propagation models, such as cracks or spalls

propagation [Li et al., 1999, 2000; Marble and Morton, 2006; Ray and Tangirala, 1996].

Fault propagation are usually affected by the loading (operational) conditions of the

components. Therefore fault propagation models usually incorporate the loading

conditions as inputs and compute cumulative damage over time. The future loading

condition, however, is sometimes an uncertain factor under dynamic operational

conditions. The common way to deal with this uncertainty is to assume a certain

loading pattern, e.g. constant loading, for the future. Multiple loading scenarios can

be applied to evaluate the component’s RUL with different usage behaviors.

Many characteristic parameters for PoF models have to be identified using

experimental data. Backed up by the first principles regarding to relations of the

measurement data (such as vibration) and experimental settings (such as loading),

it is possible to use a fewer number of experiments to identify the characteristics of

the system comparing to what’s needed for data driven methods. However, due to

modeling assumptions, errors and unforeseeable uncertainty in the application, the

model may not be as accurate as it is developed in the experiments. Therefore the

PoF models are usually integrated with on-line parameter updating methods based on

the measured condition data at run time; this essentially become a hybrid modeling

method, which will be addressed later.

2.4.3.2 Model-based FDI

Model-based Fault Detection and Isolation (FDI) is a subfield of control

engineering and has been studied for more than 40 years. Model-based FDI requires
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the mathematical model of the physical system that is under consideration; it makes

FDI decisions based on the residual generated between the physical system and the

mathematical model. Although there are more than on type of model-based FDI

scheme, they all end up with state estimation or parameter estimation [Frank, 1990];

from health prognostics point of view, the estimated state or parameters can be used

as the health indicators, either physical or mathematical ones.

Frank [1990] summarized four types of model-based FDI schemes. The parity

space approach, also called analytical redundancy, uses the model to simulate system

output with given inputs, and use the error between the physical system output and

the simulation output as the fault indicator. The dedicated observer approach is used

to estimate the hidden state of the system using both the inputs and outputs of the

physical system; the estimated state can be a health indicator with clear physical

meaning. The fault detection filter (FDF) approach is used to model the impact of

particular faults to the system’s input-output behavior; the FDF models can then

be used to detect and isolate a fault when the system behavior can be explained by

the particular FDF model. The parameter identification approach tries to learn the

system parameters from the input/output of the physical system and use the change

of system parameters as health indicators.

Traditionally, model-based FDI approaches do not model fault progression

inherently; in such cases the generated states or health indicators has to be combined

with other prediction tools to achieve prognostics. Recently, the model-based FDI

modeling scheme is also employed under prognostics settings, where the mathematical

models direct model the fault propagation behavior of the system; with the dedicated

observer modeling scheme, the system state can be estimated recursively into the

future for failure threshold evaluation. These types of FDI models usually integrate

the recursive filtering techniques, such as Kalman filter, Extended Kalman filter and
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Particle filter, to achieve robust state estimation – this leads to the so-called hybrid

modeling approach (see the next section).

The modeling scheme of model-based FDI has also been extended for data-driven

modeling. Instead of deriving the models from first principles, generic black-box

models, such as Nonlinear Autoregressive Exogenous (NARX) models [Leontaritis

and Billings, 1985], Artificial Neural Network, etc., can also be used to model the

input-output relations of the system. The parameters of these models, similar to the

first-principle models, can be identified from the training data.

2.4.3.3 Hybrid models

Recursive Bayesian estimator is an important approach to integrate state-space

models of the system with the sensor measurement data and enables the so-called

hybrid models for prognostics. Recursive Bayesian estimators have two common

procedures at each iteration: predict and update. Let si be the unobservable state

that is assumed to have Markovian properties, i.e. the current state si is only

dependent on the immediate leading state si−1 but independent from all other earlier

states si−2, si−3, ..., s0. Let oi be the observation variable that is assumed to be

only dependent on the current state si but independent from all other states and

observations. Then a generic Bayesian filter will have the following form for recursive

prediction and update:

Prediction: p(si|oi−1) =

∫
p(si|si−1)p(si−1|oi−1)dsi−1 (2.1)

Update: p(si|oi) = p(oi|si)p(si|oi−1)

p(oi|oi−1)
= α · p(oi|si)p(si|oi−1) (2.2)

where the denominator p(oi|oi−1) is used for normalization purposes and thus can

be replace by a coefficient α. The transition probability p(si|si−1) and observation

probability p(oi|si) are priors decided by the state-space model of the system, which

18



www.manaraa.com

can be derived from physics or learned from the data.

Two important variants of recursive Bayesian estimators are Kalman Filter [Welch

and Bishop, 1995] and Particle Filter [Arulampalam et al., 2002]. Kalman filter is an

optimal recursive Bayesian estimator for linear state-space model with Gaussian noise.

For non-linear state-space models, linearization around the current point can be made

and this leads to the Extended Kalman Filter. Ray and Tangirala [1996] presented

a nonlinear stochastic model of fatigue crack dynamics and used Extended Kalman

Filter for online fault prognosis. Note that the EKF is not an optimal estimator any

more; if the initial estimate of the state is significantly off-target, or if the process is

modeled incorrectly, the filter may quickly diverge, owing to its linearization [Saha

et al., 2009]. For non-linear state-space model with non Gaussian noise, the Particle

Filter provides a better solution. Particle Filter, a recursive Bayesian estimator

based on sequential Monte Carlo (MC) simulations [Saha et al., 2009], models the

probability density functions using a set of discrete points. Orchard and Vachtsevanos

[2009] presented a particle filtering framework for fault prognosis.

2.4.4 Data-driven approaches

The data-driven approaches here refer to those methods that models the

degradation behavior from time series of the system state (or the raw measurement

data, the computed features, etc.), and make predictions based on the learned models.

Most data-driven approaches do not model system inputs; they only model the

behavioral measurement data. The system’s future operational profile, i.e. the inputs,

is assumed to be constant or at least consistent with the past. The data-driven

approaches discussed here predict the system’s future state recursively until reaching

the failure criteria; in this way, the RUL can be obtained.
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2.4.4.1 Linear/non-linear regression

The most basic method to make predictions from a time series is to fit a parametric

regression model from the historical data and then extrapolate the model to the future

time. Consider a 1-D time series (T,X) = {(ti, xi)|i = 1, ..., I} generated from random

variable x with time stamp t. A simple linear model can be expressed as

x = β0 + β1 · t+ ε (2.3)

where (β0, β1) are model parameters to be found, and ε is the noise term. A

generalized linear model has the following form

x = β0 +
P∑

p=1

βpφp(t) + ε (2.4)

where φp(t) can be any function of t, representing P basis functions of the linear

model. For example, with P = 2, φ1(t) = t and φ2(t) = t2, Eq.(2.4) gives a second-

order polynomial model

x = β0 + β1 · t+ β2 · t2 + ε

Similarly, certain non-linear parametric models can also be used to fit the time series

data. For example, an exponential model with four parameters has the following form

x = β0 + β1 · exp (β2 · t+ β3) + ε (2.5)

Many techniques, such as Least Square, Maximum likelihood, etc., can be used

to estimate the model parameters from the training samples (T,X). Once the

parameters are obtained, prediction is as simple as evaluating the model response

with a future time t as input. The challenge of the simple regression method is to

find an appropriate form of parametric model that can best explain the degradation

behavior in the time series. In practice, the best model form can be discovered from
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historical failure cases with run-to-failure data, where a complete degradation pattern

can be observed. However, the real-world systems’ degradation pattern seldom follow

the simple form of parametric models.

2.4.4.2 ARMA/ARIMA

The Autoregressive Moving Average (ARMA) model is a variant of the Box-

Jenkins models [Box et al., 1994] that is capable of modeling autocorrelated time

series data. For a time series (T,X) = {(ti, xi)|i = 1, ..., I} with uniform timestamps

(i.e. Δt = ti+1−ti is constant), the ARMAmodel with order (P,Q) takes the following

form

xi = −
P∑

p=1

ϕpxi−p +

Q∑
q=1

θqεi−q + εi (2.6)

where ϕpxi−p are P autoregressive terms and θqεi−q are Q moving average terms.

As we can see that the ARMA model consists of two parts: an autoregressive (AR)

part that addresses the observation values, and a moving average (MA) part that

addresses the noises in the observations. The model without the MA terms is called

an AR model. An ARMA model has less modeling error than an AR model due to

the added MA terms.

A major limitation for ARMA models in prognostics applications is that they

assume the time series to be stationary. For non-stationary signals, the Autoregressive

Integrated Moving Average (ARIMA) models, another variant of the Box-Jenkins

models, are more appropriate.

ARMA/ARIMA models support only one-step-ahead prediction. For long term

prediction, the model has to be evaluated recursively, using the predicted value from

previous steps as known inputs for a new prediction step. Note that ARMA/ARIMA

are univariate models, therefore their usage in prognostics application is usually to
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extrapolate a single health indicator. For instance, Yan et al. [2004] used ARMA

model to extrapolate the health-index time series generated from a logistic-regression

based health assessment model.

2.4.4.3 Artificial Neural Networks

The Artificial Neural Networks (ANN), or Neural Networks (NN) in short, can

be treated as a multi-input-multi-output nonlinear blackbox function approximator,

y = fNN(x; Ψ), where Ψ is the parameter vector. NN has the flexible to play different

roles in prognostics applications, such as state estimation, state prediction or directly

RUL modeling (see Section 2.4.5), depending on how the inputs and outputs are

constructed.

When used for state estimation, the inputs to NN are multivariate measure-

ments/features x and the output is the estimated 1-D state s:

s = fNN(x; Ψ) (2.7)

When used for state prediction, the inputs to NN are consecutive states in the past

and the output is the future states to be predicted:

(xi+1, ..., xi+Q) = fNN(xi−P , xi−P+1, ..., xi−1; Ψ) (2.8)

When used for direct RUL estimation, the inputs to NN are consecutive states in the

history and the output is the expected RUL:

ri = fNN(xi−P+1, xi−P+2, ..., xi; Ψ) (2.9)

All three scenarios have been reported in literature for prognostics applications.

[Wang and Vachtsevanos, 2001] used wavelet neural networks (WNN) to evaluated

crack from features, and then used dynamic wavelet neural networks (DWNN) to

predict the fault propagation process and estimate RUL. Yam et al. [2001] applied
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a recurrent neural network (RNN) for predicting the machine condition trend and

Heimes [2008] applied RNN for aircraft engine RUL estimation. From the modeling

point of view, a feed-forward NN is a special case of non-linear AR models, whereas

an RNN, with feedback connections, is a non-linear AR moving average model [Wang

et al., 2004]. Similar to the advantages of ARMA models over AR models, RNN as a

predictor has advantages over the feed-forward NN, as verified by Tse and Atherton

[1999] through simulation and practical tests.

2.4.4.4 Fuzzy Logic systems

The Fuzzy Logic (FL) systems provide another method for nonlinear function

approximation. The difference from the NN approach lies in that FL gives more

transparency to the mechanisms behind function approximation by using linguistic

rules to integrate simple local models into a highly nonlinear model. A frequently-

used FL model for function approximation or regression is the Takagi-Sugeno model

[Takagi and Sugeno, 1985]. Similar to the use of NN, the input-output of the Takagi-

Sugeno model can be constructed differently so that the model can be used to predict

future states or the RUL directly.

Rule generation in a FL system usually requires expert knowledge. This is an

advantage in that it can incorporate knowledge to guide model creation; however

it may be also a disadvantage if the system is too complex to design rules one by

one. This disadvantage can be overcome by the Neural-Fuzzy (NF) method, such

as the Adaptive Neural Fuzzy Inference System (ANFIS) [Jang, 1993], which utilizes

NN to learn the fuzzy system structure and rules. Of course, the use of NF method

will make the FL system closer to a blackbox approach, i.e. NN. Wang et al. [2004]

applied both NF and RNN to gear condition prediction and reported that NF can

achieve better prediction accuracy than RNN. Chinnam and Baruah [2004] presented

23



www.manaraa.com

a NF approach to estimate RUL for the situation where no failure data and no specific

failure definition are available, but instead, domain experts are available.

2.4.4.5 Hidden Markov Models

The Hidden Markov Model (HMM) is a stochastic model consisting of unob-

servable states that have Markov properties and observations that are dependent

only on the current state but independent from other observations. The HMM has

similar form to the recursive Bayesian estimator discussed in Section 2.4.3.3; the

difference is that the states in a HMM are usually discrete and the state-space

model behind HMM has a probabilistic form rather than derived from physics.

The HMMs has been primarily used for sequence clustering and classification for

applications such as speech recognition [Rabiner, 1989] or dynamic system fault

detection [SMYTH, 1994]. Due to the state-estimation capability of HMM, it has also

been used for prognostics applications. For example, Baruah and Chinnam [2005]

applied HMM for both fault diagnostics and prognostics of cutting tool condition

in machining processes. Chinnam and Baruah [2009] proposed an autonomous

diagnostics and prognostics method using competitive learning-driven HMM-based

clustering in machining processes. When used for prognostics, especially for RUL

estimation, the assumption of Markovian property is not always realistic because the

HMM does not model temporal information about state transition. Dong and He

[2007] proposed a segmental hidden semi-Markov model (HSMM)-based prognostics

framework to address this issue. An HSMM allows modeling the time duration of the

hidden states and therefore is capable of prognostics [Dong and He, 2007].
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2.4.4.6 Other approaches

Relevance Vector Machine (RVM) [Tipping, 2001] is a sparse kernel method. RVM

has an identical function form as a Support Vector Machine (SVM), but use a Bayesian

inference approach to obtain solutions for regression and classification. Considering

the generalized linear model given by Eq.2.4, both RVM and SVM can be expressed

with the following form using kernel basis functions:

y(x) =
I∑

i=1

K(x,xi)wi + w0 (2.10)

where K(•, •) is the kernel function, wi are weights and I is the number of training

samples. Sparsity of RVM or SVM is achieved because the majority of the weights

wi will be zeros or close to zero once the model is learned from training; the

non-zero weights are corresponding to the training samples that are called the

relevance/support vectors. Then, SVM can make predictions using a deterministic

approach while RVM can provide probabilistic outputs. One of the advantages of

RVM over SVM is that RVM typically utilizes dramatically fewer basis functions

than a comparable SVM [Tipping, 2001].

Gaussian Process Regression (GPR) [Williams, 1998] is another kernel method

with Bayesian treatment for regression. While Gaussian distribution is over vectors,

Gaussian process is over functions. A Gaussian Process is fully specified by the mean

function m(x) and covariance function k(x, x′). Therefore a function under GPR

context can be considered to have a Gaussian process distribution with mean function

m(x) and covariance function k [Rasmussen, 2004]. It was shown that Gaussian

processes models are equivalent to the NN with one hidden layer and an infinite

number of hidden neurons [Neal, 1996].

Three prediction methods, GPR, RVM and NN, were used by Goebel et al. [2008]

for RUL prediction of a rotating equipment in a test stand of an aerospace setting. It
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concluded that NN performance varies with the choice of training data and also with

its architecture, while RVM and GPR have the advantages to provide probability

distribution for uncertainty management.

Wegerich [2004] presented a similarity-based modeling method derived from

Multivariate State Estimation Technique (MSET) [Cheng and Pecht, 2007], which

make predictions by averaging the training data based on a similarity measure.

Liu et al. [2007] presented another formulation of similarity-based prediction, which

make predictions by comparing signatures from any two degradation processes using

measures of similarity that forms a Match Matrix. The method can effectively include

large amounts of historical information into the prediction of the current degradation

process.

2.4.5 Experience-based approach

This category of RUL prediction methods directly model the relation between the

measurement data and RUL from historical failure cases. These models can predict

or infer RUL directly without the need to evaluate the failure criteria because no

predictions of system states will be made. The methods in this category include AI

methods, reliability analysis methods, stochastic filtering method, and instance-based

methods.

2.4.5.1 AI methods

Many generic nonlinear regression models or function approximators can be

configured to make direct RUL estimation, as long as the model output/response

variable are chosen as RUL directly. For example, [Tian and Zuo, 2009; Tian et al.,

2009] employed a NN model for RUL prediction, with the condition data and unit

age as inputs, and the RUL as output.
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2.4.5.2 Reliability/survival analysis

The traditional reliability/survival analysis methods statistically model failure

rate, reliability and failure time distributions from historical data. These methods

can compute RUL distributions solely based on age, such as the Weibull models, or

based on both age and condition data, such as the Proportional Hazard Models.

The Proportional Hazard Model (PHM) 1, since Cox’s pioneering paper in

1972 [Cox, 1972], has been the most prevalent approach for survival analysis. It

has been extensively used for reliability-centered maintenance and condition based

maintenance practices. In order to incorporate condition monitoring data, a time-

dependent PHM is required, whose hazard/failure-rate function is given as

h(t) = h0(t)exp (β1x1(t) + ...+ βpxp(t)) (2.11)

where h0(t) is the baseline hazard function, x1(t), ..., xp(t) are time-dependent

covariates (the condition data) and β1, ..., βp are coefficients. A frequently used

baseline hazard function is the Weibull hazard function, which is the hazard function

of the Weibull distribution. PHM with Weibull baseline hazard is called Weibull

PHM, which is frequently used for optimal component replacement decisions in

condition based maintenance [Jardine et al., 1987; Vlok et al., 2002]. Weibull PHM,

however, cannot make RUL prediction by itself without additional predictions to the

time-dependent covariates x1(t), ..., xp(t). Banjevic and Jardine [2006] used a joint

model of PHM and Markov to achieve RUL estimation, where the covariates are

modeled by a Markov process.

Proportional Intensity Model (PIM) is an extension of PHM, which adopts a

stochastic process setting and assumes a similar form to the intensity function of the

1 The acronym PHM used in this section should not be confused with term of Prognostics and
Health Management (PHM) used before.
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stochastic process [Jardine et al., 2006]. Vlok et al. [2004] applied PIM with covariate

extrapolation to estimate bearing residual life.

Note that PHM and PIM models use only the latest condition data to compute the

failure time distribution, which makes the method subject to noise in the condition

data.

2.4.5.3 Stochastic filtering

The stochastic filtering method [Wang and Christer, 2000; Wang et al., 2000] is a

recursive Bayesian estimator (see Section 2.4.3.3) designed for direct RUL estimation.

In this method, RUL is treated as a special state of the system and will be estimated

and updated recursively from the collected condition data. Wang [2002] used the

stochastic filtering method to predict the RUL of rolling element bearings given

monitored condition information to date. Carr and Wang [2008] compared the

stochastic filter with Weibull PHM for RUL estimation using oil-based condition

monitoring data set. It shows that stochastic filtering approach provides better

predictions than PHM in terms of MSE prediction errors.

2.4.5.4 Instance based learning

Instance Based Learning (IBL) provides a non-parametric solution for pattern

analysis and prediction, which allow the hypothesis complexity to grow with the data.

On the contrary, the traditional prediction methods assume a particular restricted

family of models, which often oversimplifies what’s happening in the real world

[Russell and Norvig, 2003, p.733]. Typical IBL algorithms includes the k-nearest-

neighbor method, Kernel Regression [Russell and Norvig, 2003], Locally Weighted

Regression [Mitchell, 1997], and so on. These algorithms, however, represent instance

as a vector in an n-dimensional Euclidean space. For the application of diagnostics
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and prognostics, a richer instance representation is usually required – this has led

to the technique of Case Based Reasoning (CBR) [Aamodt and Plaza, 1994], an

extension to IBL, which relies on the philosophy of “similar cases produce similar

outputs” for problem solving.

Past applications of IBL or CBR (e.g. Saxena et al. [2005]) has mainly focused on

fleet-based diagnostics problems, with only a few cases addressing RUL estimation.

Bonissone et al. [2005] used IBL for locomotive RUL estimation, where the instance

was associated with a number of attributes such as the usage and maintenance history,

and a Fuzzy instance model was proposed to evaluated instance similarity in the n-

dimensional attribute space. Xue et al. [2008] employed a similar approach for aircraft

engine RUL estimation. In both applications, the RULs of the training instances were

estimated by a variety of methods such as heuristics or statistics, and then the RULs

given by similar training instances were aggregated using Kernel Regression to make

the final RUL estimate. Gebraeel et al. [2004] proposed a neural network approach

for bearing residue life prediction, which had the nature of IBL methods too. In this

application, features extracted from vibration signals of multiple bearing instances

were first used to train multiple neural networks to establish the relation between

the features and the bearing’s usage time; then the neural networks were used to

evaluate similarity between a test instance and the training instances. Huang et al.

[2007] employed a similar approach for bearing RUL estimation, with the difference

of improved feature extraction method. Recently, Zio and Maio [2010] presented a

similarity-based approach for prognostics using Fuzzy point-wise similarity defined for

degradation trajectory data. This method followed the same thinking as the method

proposed in the earlier publication [Wang et al., 2008] and the TSBP method to be

presented in this thesis; the difference mainly lies on the definition of similarity and

the treatment method for model aggregation.
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Generally speaking, the IBL approach for RUL estimation involves three essential

tasks: instance retrieval, prediction through local models and aggregation of local

predictions. Instance retrieval employs a certain definition of similarity (or distance)

between the test and the training instances to generate weights for each training

instances. Local instance models are required for each of the training instances to

produce local RUL predictions. It is common to use the actual life of the training

instance as the prediction of the test instance’s life. Finally, the local predictions

will be aggregated to obtain the final RUL estimate using weighted sum of the local

predictions, where the weight is a function of the similarity score obtained during

instance retrieval. The current usage of IBL for RUL estimation, however, has a

limitation. During instance retrieval, the similarity between instances is defined either

using a number of attributes of the instance [Bonissone et al., 2005; Xue et al., 2008],

or using the feature vector at the latest measurement cycle [Gebraeel et al., 2004;

Huang et al., 2007], or using a fixed number of past measurements [Zio and Maio,

2010]. Therefore the information contained in the up-to-date condition data is not

fully utilized to decide instance similarity. This issue will be addressed by the TSBP

approach presented in this thesis.

Note that IBL is a so-called “lazy learning” approach, which defers the decision of

how to generalize beyond the training data until a query instance is provided [Mitchell,

1997]. Therefore the computational load during model training can be light but that

during model evaluation can be much higher.

2.5 Methods of performance evaluation

Currently there’s no widely acceptable performance evaluation method for

prognostics applications. A large number of performance metrics are available, but

the selection of them are usually applications specific, and sometimes subjective.
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Some of the performance metrics are derived from other prediction-related subject,

such as Mean Squared Error (MSE) from regression analysis. These metrics, however,

may be incapable to address the special needs of prognostics. Recently years, some

attempts have been made to develop a generic performance evaluation framework for

prognostics applications. In this section, some frequent used traditional performance

metrics as well as the performance evaluation framework proposed by Saxena et al.

[2010] will be discussed.

2.5.1 Notations

For each test instance, an RUL ri can be predicted with historical measurement

data provided up to the time ti. The true RUL at ti is noted as r∗i . During evaluation,

the historical measurement data can be provided incrementally so that multiple RUL

predictions can be made. These predictions will form a time series of predictions,

R = {ri|ti}. Usually predictions will not be triggered when only a few measurements

are available; the earliest time to start prediction is noted as time tP with time index

P . Also, predictions too close to the end of life of the system lose the practical value

and thus will not be evaluated either; the last prediction is called End of Useful

Prediction (term adopted from Saxena et al. [2010]) and the corresponding time is

noted as tEoUP . Therefore the valid range of time series R = {ri|ti} is constrained by

tP ≤ ti ≤ tEoUP or P ≤ i ≤ EoUP .

In many cases, multiple test instances will be used for performance evaluation.

For the kth out of K test instances, the predictions time series is noted as kR =

{kri|ti, ktP ≤ ti ≤ ktEoUP}. The corresponding ground-truth RUL at each time stamp

is noted as kr∗i .

Usually prediction performance is evaluated based on the errors between the

predictions and the ground truth. The error is noted as kΔi =
kri − kr∗i .
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2.5.2 Traditional performance metrics for predictions

Traditional performance metrics are functions of the prediction errors. These

metrics treat each single RUL prediction independently, even though many predictions

are made for the same instance but only at different time. Therefore all the predictions

fromK test instances will be combined to form a new set of predictions Ω = {(rj, r∗j )},
eliminating the information of instances and timestamps. The total number of

predictions in the set is J = |Ω| =
∑K

k=1 |kR|. Prediction errors is noted as

Δj = rj − r∗j , j = 1, ..., J . Frequent used performance metrics can be computed

as follows.

2.5.2.1 Accuracy based metrics

Accuracy based metrics evaluate how close the prediction is to the ground truth.

• Bias:

Bias =
1

J

J∑
j=1

Δj

• Root Mean Squared Error:

RMSE =

√√√√ 1

J

J∑
j=1

Δ2
j

• Mean Absolute Error:

MAE =
1

J

J∑
j=1

|Δj|

• Symmetric Mean Absolute Percentage Error [Saxena et al., 2008a]:

sMAPE =
100

J

J∑
j=1

2|Δj|
rj + r∗j
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2.5.2.2 Precision based metrics

Precision based metrics evaluate the spread of the prediction errors. Note that

the precision metrics is invariant to the bias. In other words, an algorithm with large

bias but low StdE and MAD can be adjusted to remove bias for improved accuracy.

• Standard deviation of the error [Saxena et al., 2008a]:

StdE =

√√√√ 1

J − 1

J∑
j=1

(Δj − Bias)2

• Mean absolute deviation from the sample median [Saxena et al., 2008a]:

MAD =
1

J

J∑
j=1

|Δj −median(Δj)|

2.5.3 Performance evaluation framework for prognostics

RUL prediction in prognostics is made based on the history of condition

measurements. Predictions made early on have access to less information about

the dynamics of fault evolution and are required to predict farther in time, which

makes the prediction task more difficult as compared to predicting at a later stage

[Saxena et al., 2010]. The traditional performance metrics seldom take this factor

into consideration and therefore is inadequate to represent the true performance of an

algorithm. [Saxena et al., 2010] gave an attempt to address this problem by proposing

a performance evaluation framework that consists of four performance metrics in

hierarchy. Under this framework, the predictions made for one instance at different

timestamps are treated as a whole; performance metrics are defined on the prediction

series for each instance instead of single predictions. The four performance metrics

under this framework are listed below.
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Prediction Horizon evaluates how long time ahead of failure the algorithm can

predict with at least the specified accuracy. The specified accuracy is given as a

percentage of the actual life of the instance.

α− λ performance evaluates whether or not the predictions at a time within the

prediction horizon stays within the accuracy requirement. The accuracy requirement

is given as a percentage of the actual RUL (not the total life), which is a more strict

requirement for accuracy.

Relative accuracy quantitatively evaluate the absolute percentage error of a

prediction at a time within the prediction horizon, if the algorithm has met the

requirements of the previous metrics.

Convergence evaluate how fast the prediction performance (any accuracy based

metric) improves towards the end life of the instance, if the algorithm has met the

requirements of the previous metrics.

This performance evaluation framework will be adopted in this thesis with

modification in the case study (see Section 5.2).

2.6 Challenges of RUL prediction for complex systems

Although many algorithms have been developed and experimented for RUL

prediction, successful stories on prognostics are still rare in reality. Multiple issues

are challenging the application of prognostics in complex systems.

2.6.1 System complexity

For a complex system, it is almost impossible to understand and model every detail

of the system’s behavior. What’s modeled is usually limited to the overall operating

mechanism of the system (system model) and some micro-level physics models for

the critical components in the system. There prognostics functionalities with more
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coverage of the system’s failure modes has to resort to the collected condition data.

However, a complex system may exhibit highly nonlinear, stochastic behavior due

to various reasons, such as manufacturing variations of the vast number of components

and their assembly, numerous fault and failure modes that may evolve or occur

simultaneously, and the nonlinear relations between those factors and the measured

signals. The nonlinear, stochastic behavior of the system has placed great challenge

to data-driven modeling. In addition, the system behavior from different instances

may behave inconsistently even under identical operational conditions, which adds a

new level of challenge for the derived data models to make predictions.

2.6.2 Data quality

Prognostics application relies on the measured condition data of the system. Data

quality issue further increases the challenge of prognostics design due to the fact of so-

called “Garbage In, Garbage Out”. Instrumentation of the system is seldom, if ever

possible, perfect. Instrumentation accuracy can be improved by the advancement of

new sensing technologies and data acquisition systems; however, the parameters to

be measured can never be complete for a complex system. The system’s operational

settings as well as some environmental parameters may not have been measured

completely; and the system’s behavior may have been observed from only a limited

number of perspectives (e.g. vibration measurement at a few locations in a huge

machine). Without these measurements, the behavior variety of the system caused

by them will have to be treated as noise during modeling.

Prognostics techniques model system degradation, which require the actual

degradation to be given. However, degradation is an unobservable virtual property

that can be only be defined vaguely based on the observables or the human judgment.

When the data is collected from a complex system, the actual degradation towards

35



www.manaraa.com

different faulty modes are unknown. Due to incomplete knowledge to the system,

not all the fault reasons can be labeled by experience; actually some minor fault

mechanism are never known and never measured. The many unknown information

for the collected data create another challenge for data-driven modeling.

In many cases, the data used for modeling are collected from controlled

experiments rather than from the actual system under its normal operation. Though

these data may have higher “quality” in terms of noise level and completeness of

context information about the system’s actual condition, these data may not be

representative of the actual system. Models developed from these data may over

simplify the problem and produce poor performance once deployed.

2.6.3 Uncertain future operations

Operational conditions has great impact to the system behavior as well as the

degradation progression pattern. Past operational conditions can be measured to

facilitate prognostics modeling whereas future operational conditions are unknown.

Therefore it has to be assumed that the system’s future operation or usage will follow

a certain estimated pattern, e.g. identical to the past. The uncertainty of future

operation pattern adds a challenge for degradation estimation and RUL prediction.

In addition, a real-world system in the field are almost always maintained regularly

with preventive maintenance practices. These maintenance actions will recover the

system’s condition and vary its behavior. Even if the time of preventive maintenance

actions can be modeled (e.g. in semiconductor industry the equipment usually

experiences major maintenance after a fixed number of hours of usage), the impact of

them is hard to model. This creates a challenge for a deployed prognostics solution.
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2.6.4 Validation difficulties

RUL prediction is different from future behavior predictions, such as weather or

stock forecasting, which can be validated immediately after the future time comes

to present and the true behavior becomes available. RUL prediction can only be

validated after the system has experienced the whole life cycle and come to a real

failure point; this process can take very long time (e.g. many years) for many

engineering systems. If the system is actually approaching to the failure point,

there’s no reason to let the system fail without taking preventive actions. The

actions will eventually change the original degradation process of the system and

thus will invalidate the predictions made previously. In addition, certain run-to-

failure experiments require frequent disassembly of the system to find out the ground

true conditions; this assembly-disassembly process creates variations in the system

performance and the system life shifts from what it may have been in the beginning

of the experiment [Saxena et al., 2010].

Another challenge of validation comes from the lack of common performance

metrics as mentioned in the previous section. An algorithm’s strength and weakness

are not absolute; they vary under different situations of the application.
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3 Methodology of TSBP

In this chapter, the framework of Trajectory Similarity Based Prediction (TSBP)

for RUL estimation will be laid out and the procedures of TSBP will be described in

details.

3.1 Intuition

As mentioned before, the degradation process for many engineering systems,

especially mechanical systems, is irreversible unless the condition is recovered

by effective maintenance actions. The irreversible degradation process does not

necessarily imply that the observed features will exhibit monotonic progression

pattern during degradation. Such progression pattern is sometimes hard to model

using parametric methods.

Considering a degradation process involving no or limited maintenance, the

process may compose of a sequence of irreversible stages (either discrete or continuous)

from new to worn out, which can be implicitly expressed by the trajectory of

the measured condition data or features. Therefore the RUL of the system

can be estimated if its future degradation trend can be projected from those

historical instances that has failed. Inspired by the Instance-Based Learning (IBL)

methodology, similarity between the degradation trajectories of different instances

can be computed first; and then the failure time of one instance can be estimated

based on the actually failure time of similar instances; finally the RULs estimated

from multiple historical instances can be aggregated to generate the final prediction

of RUL.
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3.2 Problem definition

Let x = (x1, x2, . . . , xN)
T be an N -dimensional feature vector extracted from the

raw data collected from a system. The feature extraction methods are application

dependent and will not be discussed here. Suppose the system is instrumented at

a certain time interval (variable or fixed) through its life cycle. The samples of the

feature vector xi is timestamped by ti (or indexed by the cycle number i). Let

tE denote the end-of-life time stamp and tI denote the time stamp of the latest

measurement cycle. Then the RUL estimation problem for a system can be defined

as computing RUL rI := tE − tI of a test instance given

1. The up-to-date history of feature vectors from the test instance XI =

{x1,x2, ...,xI},
2. L training instances of the same type of system with complete history of feature

vectors lXI = {x1,x2, ...,xI}, l = 1, ..., L, and

3. The known or pre-estimated end-of-life time ltE for each training instance. If

the training instance has failed at the last measurement cycle, then ltE = ltI ;

otherwise an RUL estimate lRUL for the training instance should be provided

such that ltE = ltI +
lRUL.

In case the system operates under variable operating conditions, it is desirable to

include measurements on the operating conditions as well for both the test instances

and training instances.

3.3 Framework of TSBP

TSBP is a non-parametric prediction technique designed especially for engineering

system RUL prediction problem. In TSBP, a number of degradation trajectories are

extracted from the historical data of the training instances that have known failure
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times, and form a library of degradation models. For a test instance of the same type

of system, similarity between it and each of the models in the library are evaluated

by computing the minimal weighted Euclidean distances between two degradation

trajectories. Then the RUL of the test instance is estimated by the known failure

time of each of the degradations models. The final RUL prediction is obtained by

aggregating the multiple RUL estimates from individual degradation models.

As shown in Fig. 3.1, the TSBP method includes three essential procedures:

1. Degradation trajectory abstraction: build instance/local models from the

degradation trajectories of the training instances.

2. Similarity evaluation: evaluate similarity between a test instance and each of

the instance models based on the degradation trajectory; an RUL estimate will

be obtained from each instance model.

3. Model aggregation: aggregate the RUL estimates obtained from all the instance

models to get the final RUL prediction.

0. Data 
preparationTraining TestpreparationTraining 

Instances
Test 

InstancesInstances Instances

1 D d ti 2 Si il it /1. Degradation 2. Similarity/ 3 Modeltrajectory distance 3. Model
aggregation RUL

abstraction evaluation aggregation

Training Stage Testing Stageg g g g

Figure 3.1: General procedures of TSBP approach for RUL estimation
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In many cases, the Principal Component Analysis (PCA) will be applied first to

reduce the dimensionality of the feature vector by converting it into a fewer number of

principal components before taking procedure 1. PCA can remove linear correlation

among the variables and suppress noise by fusing multiple variables. This process

can be considered as an optional procedure 0, Data preparation, as shown in Fig.

3.1. Depending on the application, data preparation may include extra processing

tasks, such as variable selection, data normalization, etc., which will be discussed in

Chapter 4). This chapter will cover only the three essential procedures.

3.4 Key procedures

3.4.1 Degradation trajectory abstraction

Suppose z = (z1, z2, . . . , zM)T consists of the first M Principal Components (PCs)

(uncorrelated variables) computed from the N -dimensional (N ≥ M) feature vectors

x, and ZI = {z1, z2, ..., zI} denotes the PC time series. Let lG denote the degradation

model built from lZI , the PC time series of the lth training instance. The degradation

model lG describes the PCs z as a function of time t:

lG : z = lg(t) + ε, 0 ≤ t ≤ ltI (3.1)

where ε is the noise term and in many cases is modeled as Gaussian.

Many parametric and non-parametric methods can serve the purpose to build

such a degradation model. Many real-world systems can be assumed to follow

a monotonic degradation pattern, but which may not be necessarily reflected on

the measured data or features. For instance, RMS of a bearing’s vibration, or its

energy around a certain defect frequency, may not be monotonic increasing over

the bearing’s life cycle. Therefore sometimes it is hard to use a parametric model

to model the progression of the observed features. One solution is to estimate the
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actual, hidden degradation process of the system using, for instance, the Hidden

Markov Models (see Section 2.4.4.5). Another solution is to employ non-parametric

modeling techniques, such as Kernel Regression [Russell and Norvig, 2003], Locally

Weighted Scatterplot Smoothing (LOWESS) [Craven and Wahba, 1979], Cubic Spline

Interpolation [Cleveland, 1979], Relevance Vector Machines [Tipping, 2001], etc.

The selection of parametric or non-parametric methods can be flexible depending

on the application. Considerations include but not are limited to the system’s global

degradation pattern, short-period characteristics, amount of available data, data noise

level, and so on. As for engineering system RUL estimation, the focus is usually

put on the long-term degradation behavior of the system; local fluctuations in the

degradation trajectory can be treated as disturbance or noise. Therefore, in many

cases a simple method consisting of a smoothing operation of the time series using a

moving average filter followed by linear interpolation can serve the purpose.

In this thesis, four methods for degradation trajectory modeling are evaluated and

compared. All methods discussed here model a 1-D variable as a function of time.

If the time series of features or PCs have more than one dimension, multiple models

have to be employed to model each of the dimension.

3.4.1.1 Exponential curve fitting

Exponential curve fitting is a non-linear regression problem with exponential

models. This method was used to model a normalized feature trajectory during

the 2008 PHM data challenge competition [Wang et al., 2008]).

The generic form of an exponential model for 1-D data is given as follows:

z = a · exp(b · t+ c) + d+ ε (3.2)

where a, b, c, d are four parameters to be learned from the training data. In a certain
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case where a failure threshold zf can be set for z based on knowledge (e.g. z = 0

when the features are normalized to [0 1] with 0 meaning the failure condition), the

following constraint can be applied:

zf = a · exp(b · tE + c) + d (3.3)

where tE is the failure time of the training instance. After solving the parameter d,

the following form of exponential model can be applied:

z = a · (exp(b · t+ c)− exp(b · tE + c)) + zf + ε (3.4)

The model parameters can be solved using non-linear least-square optimization

methods. However, for an exponential model, it is not uncommon that the non-

linear least-square solver diverges when the initial values of the parameters are poorly

estimated. This issue can be significant when the data is very noisy or demonstrates

little trend. It is also hard to come up a robust, automated method to estimate the

initial values, which has made this method less desirable for automated computation.

3.4.1.2 Moving average filter and interpolation

A moving average filter provides the most simplest non-parametric solution to

model a time series. With window size 2n+1, a moving average filter takes the form

zi =
1

2n+ 1

i+n∑
j=i−n

zi (3.5)

At the boundary of the time series, e.g. those samples at i ≤ n or i ≥ E − n + 1, it

is not recommended to use zero-padding because it tends to create large distortion.

Instead, a reduced window size can be applied at the boundaries. Then the moving
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average filter can be given as

zi =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
2i−1

∑2i−1
j=1 zi if 1 ≤ i < n+ 1

1
2n+1

∑i+n
j=i−n zi if n+ 1 ≤ i ≤ E − n

1
2(E−i)+1

∑E
j=2i−E zi if E − n < i ≤ E

(3.6)

For those points at t �= ti, ∀i, interpolation of neighboring points can be used to

calculate z(t). The simplest linear interpolation has the form

z(t) =
(tk+1 − t)zk + (t− tk)zk+1

tk+1 − tk
, tk ≤ t < tk+1 (3.7)

Other higher order interpolation methods such as Cubic Spline Interpolation

[Cleveland, 1979] can also be used.

3.4.1.3 Kernel regression smoothing

The kernel regression method has the following form

z(t) =

∑E
i=1 K(t, ti)zi∑E
i=1K(t, ti)

(3.8)

where K(•, •) is the kernel function. In most cases, the Gaussian kernel are used:

KG(x, y) = exp

(
−‖x− y‖2

2ρ2

)
(3.9)

where ρ is the kernel width, a free parameter that has to be specified based on the

data, usually through cross-validation.

3.4.1.4 Relevance vector machines

RVM is a sparse kernel regression method that can be used for time series

smoothing. As discussed in Section 2.4.4.6, RVM uses the relevance vectors, a much

fewer number of samples from the training samples, to construct the regression model:

z(t) =
∑
i∈S

K(t, ti)wi (3.10)
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where S is the set of the indices of the relevance vectors zi; wi is the weights associated

with the relevance vectors; wi = 0 for i /∈ S. The number of elements in S is far

less than E, the total number of samples in the time series ZE. Again, the Gaussian

kernel is the most frequent choice as the kernel function.

3.4.1.5 Comparison

Figure 3.2 shows the smoothing results provided by the four methods applied to a

noisy feature series from a degradation process. The window size for (a) is 10 samples

and the kernel width for (c) and (d) are both 10 samples. It shows that (c) produces

a smoother curve than (b) and (d) with comparable kernel width and window size.

The characteristics of the four methods are summarized in Table 3.1. As a

parametric method, the exponential curve fitting method has the most compact

parameters once the model is trained and can achieve the fastest evaluation speed.

However, the most critical drawback for this method is that the nonlinear least-square

regression used to solve the model parameters may not converge when the time series

does not exhibit good trends, or the initial estimates of parameters are inappropriately

specified. Also the method assumes the data has exponential or at least monotonic

trend; any minor fluctuation in the time series will be neglected by the fitted model.

The moving average filter and interpolation method provides a simple imple-

mentation of non-parametric smoothing. It is fast in both model training and

evaluation. The kernel smoothing method can easily achieve a good smoothing

performance; however it requires storing all the original data for model evaluation

and its computational load can be very high during model evaluation if the number

of original samples is large. RVM, as a sparse Bayesian method, greatly reduces the

computational load compared with the kernel smoothing method; however it does it

at the cost of increased training time. Also the model evaluation speed of RVM is
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Figure 3.2: Smoothing noisy time series. (a) Exponential curve fitting (b)Moving

average (c)Kernel smoothing (d) Relevance Vector Machine

not as fast as parametric methods or interpolation methods.

Therefore, we propose to use kernel smoothing method for training, but store a

smoothed time series; during testing, interpolation to the smoothed samples will be

used. The method requires the least computation in training and testing, and can

still produce an acceptable level of accuracy in degradation trajectory abstraction.

2 The RVM code used in this study comes from the open source Matlab toolbox “SparseBayes
V2” (http://www.miketipping.com/index.php?page=rvm).
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Table 3.1: Comparison of four data smoothing methods

Method Exponential

curve fitting

Moving

average with

interpola-

tion

Kernel

smoothing

RVM 2

Smoothing power Perfect Low High Medium

Training speed Fast Fast Not required Slow

Evaluation speed Fast Fast Slow Medium

Storage Low High High Medium

3.4.2 Similarity evaluation

Definition of similarity/distance between instances plays an importance role for

an IBL method. Most of the IBL applications reported define distance in an n-

dimensional Euclidean space. For the problem of RUL estimation presented here,

an instance is represented by a n-dimensional time series. The distance can be

defined intuitively by the average Euclidean distance over multiple cycles between

a test instance and a degradation model, i.e. 1
I

∑I
i=1 ‖zi − g(ti)‖2. This definition

is equivalent, to some extend, to the distance definition derived from the likelihood

functions as shown below.

The M variables in z are linearly independent and with Gaussian variance σ2
m for

each variable respectively. Then the likelihood that the measurement ZI of a test

instance comes from the degradation model lG is given as follows.
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L(ZI |lG) =
I∏

i=1

M∏
m=1

(
(2πσ2

m)
−1/2 exp

(
−
(
zmi − lgm(ti)

)2
2σ2

m

))

=

(
M∏

m=1

(2πσ2
m)

− I
2

)
· exp

(
−

I∑
i=1

M∑
m=1

(
zmi − lgm(ti)

)2
2σ2

m

)

=

(
M∏

m=1

(2πσ2
m)

−1/2 · exp
(
−1

I

I∑
i=1

M∑
m=1

(
zmi − lgm(ti)

)2
2σ2

m

))I

The Similarity between ZI and lG can be defined as the I th root of the likelihood:

lS : =
(
L(ZI |lG)

) 1
I =

M∏
m=1

(2πσ2
m)

−1/2 · exp
(
−1

I

I∑
i=1

M∑
m=1

(
zmi − lgm(ti)

)2
2σ2

m

)

Since the term
∏M

m=1(2πσ
2
m)

−1/2 is constant for all, the definition of similarity can be

further simplified as

lS : = exp

(
−1

I

I∑
i=1

M∑
m=1

(
zmi − lgm(ti)

)2
2σ2

m

)
(3.11)

The squared distance is defined as negative log of similarity:

lD2 := − log lS =
1

I

I∑
i=1

M∑
m=1

(
zmi − lgm(ti)

)2
2σ2

m

(3.12)

This distance definition has the form of normalized Euclidean distance averaged over

all cycles.

The use of the I th root of the likelihood to define similarity lS has two purposes.

Firstly, when using fewer samples from ZI , one can still compute a valid distance,

because the distance is defined as an average over the actual number of sum squares.

It is common that a test instance, while still in good condition, already has a longer

history than a training instance that has failed (i.e. tI > ltE). Apparently some

samples in ZI will have to be dropped out because there are no definition for the

corresponding lg(ti). This situation also happens when a time lag between ZI and
lG
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is applied (see Section 3.4.2.1). Secondly, using I th root of the likelihood can avoid

underflow in numeric precisions while computing the distance.

An issue with this distance definition is that, it aligns the first cycle of ZI to

the first cycle of lG, which may be a too strict definition for similarity, too strict to

accommodate the minor discrepancies in the degradation process. Some modifications

to the distance definition can be made to relax the evaluation of similarity. In

this section, three improved distance definitions are proposed to describe instance

similarity. Through these definitions, the similarity discrepancy between the instances

can be accommodated from different engineering perspectives.
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Figure 3.3: Distance definitions between a test instance and a degradation model. (a)

MED-TL distance (b) MED-DA distance

3.4.2.1 Minimal Euclidean Distance with Time Lag (MED-TL)

In the real world, the test instance and the training instance may take a different

length of initial stage to reach a similar degradation level. Therefore the definition of
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similarity has to accommodate this difference in the initial conditions of two instances.

To do this, one can compare the test instance against a certain time period in the

training instance’s history, searching for the best time lag τ that can minimize the

Euclidean distance, as shown in Fig. 3.3(a). Therefore the squared distance between

a test instance ZI and an instance model lG can be defined as:

lD2 =min
τ

d2(ZI ,
lG, τ)

d2(ZI ,
lG, τ) =

1

I

I∑
i=1

M∑
m=1

(zmi − lgm(ti + τ))2

2σ2
m

(3.13)

where τ is the time lag between the test instance trajectory ZI and the model lG, ti

is the time stamp of zi. At those t = ti where
lg(t) is not defined (i.e. ti + τ < 0 or

ti + τ > ltI), the corresponding term (zmi − lgm(ti + τ))2/2σ2
m will be dropped out,

and distance averaging will be based on the number of the effective distance terms

rather than the fixed number I.

A general constraint for τ applies: 0 < tI + τ < ltE. In practice, a tighter

constraint for τ can be specified, e.g. to confine ltE − τ by the range of the expected

minimal and maximal life of the system.

For the distance definition given by Eq.(3.13), the distance terms for all the cycles

have equal contribution to the total distance. In reality, however, it is reasonable to

assume that the most recent cycles can explain more of the instance’s degradation

behavior than the earlier cycles do. Therefore, non-uniform weights with emphasis

on the more recent cycles can be used. The squared distance can be expressed in a

more general form:

lD2 =min
τ

d2(ZI ,
lG, τ)

d2(ZI ,
lG, τ) =

1∑I
i=1 vi

I∑
i=1

(
vi ·

M∑
m=1

(zmi − lgm(ti + τ))2

σ2
m

)
(3.14)
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where vi is the weights applied to different cycles of the test instance trajectory.

For uniform weights vi = 1, ∀i, this definition becomes Eq.(3.13). For non-uniform

weights, the following weights based on Radial Basis Function can provide a desirable

weight distribution:

vi =exp
(−(ti − tI)

2/2ρ2
)

ρ =γ · lrE (3.15)

where ti is the time stamp of the ith cycle of the the test instance, and ρ is the spread

parameter that controls how fast the weights drop when a cycle gets far away from the

most recent one at tI . The choice of ρ is a percentage of the life lrE of the degradation

model lG, controlled by the spread ratio γ (e.g. 0.5). The exact value of γ can be

decided by heuristics, or optimized through cross-validation.

As mentioned before, the true life of the training instance will be used as a direct

estimate to the test instance’s life. Therefore the RUL estimate from the instance

model can be easily computed:

lrI =
ltE − tI − argmin

τ
d2(ZI ,

lG, τ) (3.16)

3.4.2.2 Minimal Euclidean Distance with Degradation Acceleration

(MED-DA)

Another method to relax the definition of similarity is to include a scaling factor

λ in the distance definition to accommodate the degradation rate difference between

the test instance and the model lG:

lD2 :=min
λ

d2(ZI ,
lG, λ)

d2(ZI ,
lG, λ) =

max(λ, 1
λ
)∑I

i=1 vi

I∑
i=1

(
vi ·

M∑
m=1

(zmi− lgm(λ · ti))2
σ2
m

)
(3.17)
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where max(λ, 1/λ) is the penalty term for the difference in degradation rate. This

distance definition can explain similarity between two trajectories when one of them

has accelerated or decelerated degradation rate compared to the other, as shown in

Fig. 3.3(b).

The scaling factor λ is naturally constrained by 0 < λ · tI ≤ ltE. Again, tighter

constraints for λ can be applied, e.g. to confine ltE/λ to the range of the expected

minimal and maximal life of the system.

The RUL estimate produced by the model lG is given by:

lrI =
ltE

argminλ d2(ZI , lG, λ)
− tI (3.18)

3.4.2.3 Minimal Euclidean Distance with Time Lag and Degradation

Acceleration (MED-TL-DA)

A combination of both the time lag and degradation acceleration factors leads to

the following distance definition:

lD2 :=min
τ,λ

d2(ZI ,
lG, τ, λ)

d2(ZI ,
lG, τ, λ) =

max(λ, 1
λ
)∑I

i=1 vi

I∑
i=1

(
vi ·

M∑
m=1

(zmi − lgm(λ · ti + τ))2

σ2
m

)
(3.19)

The constraints for λ and τ include 0 < λ · tI + τ ≤ ltE, as well as the estimated

instance life (ltE − τ)/λ to be within the expected minimal and maximal life of the

system.

The RUL estimation produced by the model lG is then given as:

lrI =
ltE − τ ∗

λ∗ − tI

(τ ∗, λ∗) = argmin
τ,λ

d2(ZI ,
lG, τ, λ) (3.20)
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3.4.2.4 Solving the optimization problem

As we can see that the three distance definitions each involve a bound-constrained

non-linear optimization process to decide the time lag or degradation acceleration

rate. The problem cannot be formulated as an non-linear least square problem

(due to the varying number of summation terms) and no gradient function can be

provided explicitly. To solve this problem, we choose to use the the Pattern Search

algorithm [Torczon, 1997], which is a derivative-free global minimization algorithm

implementing the direct search (coordinate search) method, and has been proved

to have global convergence with general constraints and simple bounds [Lewis and

Torczon, 2002].

3.4.3 Model aggregation

According to the definition of squared distance given by Eq.(3.12), the similarity

score of the test instance given by each degradation model lG can be obtained

lS = exp(−lD2) (3.21)

All RUL estimates and the corresponding similarity scores form a set HI =

{(lrI , lSI)|l = 1, 2, ..., L}. The goal of model aggregation is to aggregate the multiple

estimates in HI to get the final prediction of RUL.

The simplest method of aggregation is to use similarity-weighted sum, which

provides a Point Estimate of the RUL:

rI =

∑L
l=1

lS · lrI∑L
l=1

lS
(3.22)

In most real world applications, point estimation of RUL is inadequate for uncertainty

management of predictions and thus hard to be utilized for decision making. A

probability distribution, or a confidence interval for the predicted RUL is very
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important. Therefore, density estimation methods will be applied here to estimate

the probability distribution of RUL from set HI .

As mentioned before, the TSBP method has been developed to address the

problem of unknown failure modes mixed in the collected data. It is not surprising

if the estimated RULs from the library of degradation models have a distribution

of multiple modes. Therefor it will be hard to assume a certain parametric form of

distribution for the set HI . Here, a non-parametric method called Kernel Density

Estimation (KDE, a.k.a Parzen window method) [Sheather and Jones, 1991] is

employed.

For n independent and identically-distributed samples {x1, x2, ..., xn} of a random

variable x, the kernel density approximation of its probability density function is

given by

f̂h(x) =
1

n

n∑
i=1

1

h
K(

x− xi

h
) (3.23)

where K is the kernel function and h is the bandwidth. The frequent used Gaussian

kernel is given as

K(
x− xi

h
) =

1√
2π

exp

(
−(x− xi)

2

2h2

)
(3.24)

In our application, each sample lrI has a weight lSI , therefore the the density

estimation of RUL will have the following form

f̂h(rI) =
1∑L

l=1
lSI

L∑
l=1

lSI√
2πh

exp

(
−(rI − lrI)

2

2h2

)
(3.25)

The point estimation of RUL takes the median of rI :

r̂I = argmin
x

∫ x

−∞
f̂h(x)dx ≥ 0.5 (3.26)

The bandwidth h is a free parameter that influence the resulting estimate and

has to be specified or estimated from the data. As shown in Fig. 3.4, a larger
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bandwidth will produce smoother estimation, but it might possibly distorts the

original distribution.

0 25) 0.25

or
e)

( )0 2S
co (a)0.2

y
S

( )

0 15ar
ity 0.15

m
ila

0.1S
im 0.1

s 
(S

0.05ht
s

0.05

ei
gh

0W
e

0 20 40 60 80 100 120 140 160 180 200

W

0.08
Histogram(b)

0.06
g

bandwidth=5
(b)

0.06

y

bandwidth=5
b d idth 1

0 04si
ty bandwidth=1

0.04

en
s

D
e

0.02

0
0 20 40 60 80 100 120 140 160 180 200

0

RULRUL

Figure 3.4: Kernel density estimation from samples with weights. (a) Samples and

their weights (b) Weighted histogram and kernel density estimation with different

bandwidth

Many data-driven bandwidth selection method has been proposed in literature

and many have been implemented in commercial software packages. In this thesis,

the KDE method via diffusion proposed by Botev et al. [2010] is used. It is reliable

and extremely fast kernel density estimator for one-dimensional data with automatic
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bandwidth selection. The advantage of the method is that, unlike many others, it

does not assume a parametric model for the data and thus the estimation does not

deteriorate for multi-modal densities with widely separated modes [Botev et al., 2010].

3.5 Assumptions of TSBP

In Section 2.3, the discussion on the scope of RUL modeling brought forward a few

general assumptions on the feasibility of predictive analysis of RUL, as summarized

below:

1. The system under study shows an irreversible evolving degradation behavior

(gradually developing wear, faults, or anomalies) before a failure;

2. Catastrophic failures and infant failures are considered as exceptions for the

period that RUL predictions are made;

3. The effect of the maintenance actions, if any, during the life cycle under

consideration is negligible; otherwise, a life cycle is considered to be complete

when a major corrective maintenance action is carried out.

For the TSBP approach, additional assumptions are made:

4. The system is instrumented at discrete time (called measurement cycles).

During each measurement cycle, the system’s operation causes an equivalent

amount of wear.

5. The system’s future operation follows a similar pattern as the past.

Note that for the training instances, run-to-failure data is desirable but not

mandatory. Data collection does not necessarily start from brand-new of the system

nor end with a failure cycle, as long as an estimate of the actual failure time of each

training instances is provided.
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4 Data Preparation for TSBP Modeling

In this chapter, the issues and techniques to convert the data to the desirable

form for TSBP modeling will be discussed. The issue on data handling for

variable operational conditions will be emphasized. At the end, issues beyond data

preparation, i.e. data collection, will be discussed.

4.1 Overview

As discussed in Chapter 3, the framework of TSBP approach for RUL estimation

include three essential procedures and one optional procedure named as Data

Preparation (Fig. 3.1). The objective of data preparation is to convert the raw

data into the desirable form for TSBP modeling. The transformed data should be

a time series of M (M ≥ 1) linearly independent variables that exhibits noticeable

trend over the time. The time series is noted as ZI = {z1, z2, ..., zI} with time stamps

{t1, t2, ..., tI}, where zi = (z1i, z2i, . . . , zMi)
T .

The scope of data preparation include, but not limited to, the following aspects:

• Feature extraction: Extract meaningful information buried in the raw data.

• Denoising : Reduce noise of the data and deal with outliers. Denoising is usually

applied to the raw data before feature extraction.

• Data normalization: Transform the data into a nominal range in case that

the raw data are collected under different operational conditions so that the

extracted features are not directly comparable across regimes.

• Dimension reduction: Either select a variable subset or transform the variables

into a lower dimension.

• Health assessment : for certain prognostics models, it may be necessary to
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compute a health index from the multi-dimensional features. The health index

can be physics-related or purely mathematics-based. For the later case, the

health assessment process can be treated as a special dimension reduction (with

data normalization effect sometimes) that ultimately transform the data into a

single dimension (e.g. a value between 0 and 1).

Denoising and feature extraction for a prognostics application are application

dependent and will not be discussed further here. The other three aspects for data

preparation, namely data normalization, dimension reduction and health assessment,

will be discussed in this chapter to address a frequently encountered issue in

prognostics applications: data collected under variable operational conditions.

4.2 Data handling for variable operating conditions

Operational conditions are a set of variables that decide the settings of the

system’s operation. They can be considered as “inputs” to the system in general,

no matter they are explicit inputs such as control settings, or implicit settings such

as environmental parameters, usage patterns, etc. For instance, the speed and feed

rate for a machining process are operational conditions while the power consumption

of the spindle is not; the speed, altitude and ambient temperature for an aircraft

engine are operational conditions, while the its compressor outlet temperature is not.

Sometimes the operational conditions have to be obtained through measurement,

such as the rotational speed of a rotary machine. These measurements can be treated

as “conditions”, if the difference between the measurement and the control setting is

negligible for modeling purposes; otherwise they have to be treated as “outputs” or

“behaviors” of the system. For instance, the speed measurement of an asynchronous

induction machine can be used as the operational conditions of the motor in some

cases of motor health assessment; however, it will be treated as an output variable
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if the speed setting of the motor is also known from the controller, considering that

there’s synchronous speed slip for an induction machine and thus its actual speed is

always less than the speed setting.

In many applications, the operational conditions have huge influence to the

readings of “behavioral” measurements or the extracted features from the system,

such that the feature time series will show large variance which overwhelms the

trend caused by system degradation over time – this will create great challenges to

degradation tracking for RUL modeling. Therefore, the data collected under variable

operational conditions have to be preprocessed before applying TSBP modeling.

In this thesis, we consider the cases that the operational conditions of a system is

explicitly available, either through control settings or measurements. Let ui denotes

the vector of variables for the system’s operating conditions at time ti. Together

with the extracted features xi, the available data at each measurement cycle will be

noted as a 3-turple (ti,ui,xi). If the system dynamics can be modeled physically or

mathematically by function f with a set of parameters θ, x = f(t,u; Θ), then many

model-based FDI approaches (see Section 2.4.3.2) can be employed to handle this

issue. Here we consider only the cases that data-driven approaches are inevitable due

to lack of system models.

The objective of data-driven preprocessing can be noted as the transformation

(ti,ui,xi) → (ti, zi)

where the vector zi is independent from ui.

One method to implement this transformation is to design a supervised, global

black-box health assessment model, such as a Neural Network (NN), with both the

operational condition u and the features x as input and with a virtual (no physical
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meaning) health index as output, as shown in Fig. 4.1. The training data to learn the

NN model can be prepared in the same way as described in the later section 4.4.2.
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Figure 4.1: Data preparation for RUL modeling using Neural Networks

The global health assessment model, however, is hard to converge for a complex

data set, and has high potential to over-fit the training data. This has led to the use

of multi-regime approaches.

The multi-regime approaches are inspired by the Divide-and-Conquer philosophy,

which decompose the problem through the use of local models in different operating

regimes in the operation space of the system. Within each regime, the sensor

measurements will have similar baseline and thus can be used to track the trend of

degradation using local models. However, at each measurement cycle, the data may

be collected from only one of the regimes; each regime may contain only a limited

number of samples scattered at unevenly distributed time stamps. If each regime is

considered independently, RUL modeling will have to face the challenge of insufficient

samples. Therefore, it is desirable to first preprocess the data in individual regimes

and then merge them together to form a new time series with the original time stamp.
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After that, RUL modeling can be carried out on the new time series. To achieve this,

two types of methods can be envisioned: one with health assessment in each operating

regime to convert multivariate data into a 1-D health index, and another one with

data normalization in each operating regime to normalize the multivariate data to

a unified scale. The first method will generate a 1-D time series of health indices

and lead to health-level RUL modeling; the second method will retain the original

dimension of the features and lead to feature-level RUL modeling. Both method will

be discussed in the subsequent sections.

4.3 Regime partitioning

Suppose the operational conditions u can be clustered into a finite number of

operating regimes Ω = {O1, O2, ..., OP} using a certain clustering or space partitioning

algorithm fc(u). The output of fc are fuzzy-logic-style membership scores to each of

the clusters:

C = fc(u) = (C1, C2, ..., CP ) (4.1)

where Cp = Member(u ∈ Op). The exact clustering algorithm can be arbitrary,

such as k-means, Gaussian Mixture Models [Mclachlan and Peel, 2000], Fuzzy c-

means [Sugeno and Yasukawa, 1993], etc., as long as the algorithm’s output can be

converted to the desired form as given by Eq.(4.1).

The method described above is the general regime partitioning approach with soft

regime boundaries for continuous condition variables. In case of discrete operating

regimes or regimes with hard boundaries, the output of the clustering algorithms can

be simplified as the cluster index:

fc(u) = arg max
k=1,..,P

Ck (4.2)
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Note that the regimes identified by the partitioning algorithms may not cover the

full operation space of the system due to limited samples collected. It is possible for

a sample u to have very low membership score, if not zero, to all the clusters. In

practice a certain rule/threshold should be established to decide whether a sample

should be clustered to none of the known regimes. If so, this special sample will not

be passed to the local models for health assessment; the resultant time series will

have a “missing sample” for this time stamp. If a certain on-line learning scheme can

be developed for operating regime identification, this special sample may be labeled

and saved for learning a new operating regime later when enough samples of such

accumulate.

4.4 Multi-regime health assessment

Health assessment in nature performs two operations in one step, i.e. multivariate

data fusion and normalization. Health assessment will transform the multi-

dimensional features into a 1-D (virtual) health index within a normalized range.

Therefore, the health indices obtained from each operating regime will become

comparable and can be merged with the original timestamps to form a single 1-D

time series, as shown in Fig. 4.2.

4.4.1 Generic multi-regime health assessment model

For each operating regime Op, one local health assessment model with parameters

Θ(p) will be created:

z = h
(p)
HA(x; Θ

(p)) (4.3)
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Figure 4.2: Data preparation for RUL modeling through multi-regime health

assessment

For samples (ui,xi), the following transformation can be applied to convert the

samples into the health index domain:

zi =

∑P
p=1 Cp · h(p)

HA(xi; Θ
(p))∑P

p=1 Cp

(4.4)

Cp = Member(ui ∈ Op)

In case of discrete regimes, health assessment can be simplified:

zi = h
(p)
HA(xi; Θ

(p)) (4.5)

p = arg max
k=1,..,P

Ck
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If the health index is defined by a certain physical quantity computed from a

certain physics-based local models, e.g. the crack length in a gear, its value will be

comparable when obtained from different operating regimes. However, if the health

index is computed from a data-driven method, one has to make sure the method

produces a normalized health index.

Usually an unsupervised data-driven health assessment method that builds models

solely on the baseline data (from normal condition of the system) will not qualify. For

example, the methods using non-normalized distances to the baseline condition, such

as Euclidean distance, Mahalanobis distance or Minimal Quantization Error (MQE)

given by the Self-Organizing Maps [Huang et al., 2007; Kohonen, 2002], do not give

a health index comparable under different operating regimes; the obtained distances

have to be normalized to a range, usually between 0 and 1, using both the baseline

and faulty data – this essentially becomes a supervised health assessment method.

4.4.2 Generic training method for a supervised health assessment model

The training data to learn a supervised health assessment model can be prepared

with the following method:

• For those samples (ui,xi) collected at early age of the system, e.g. ti < T1, set

the corresponding output zi = 1;

• For those samples (ui,xi) collected at late age of the system, e.g. ti > T2, set

the corresponding output zi = 0;

• Those samples (ui,xi) collected at middle age of the system, e.g. T1 ≤ ti ≤ T2,

will not participate model training.

The definition of early/late age of the system is controlled by parameters T1 and

T2. A rule-of-thumb practice to choose the parameters is to use a certain percentage of

the total life of the instance, e.g. T1 = tE∗5% and T2 = tE∗95%. The obtained virtual
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health indices zi form a 1-D time series, which is ready for TSBP modeling. Once

the training samples are prepared, they will be clustered based on the operational

conditions ui and used to train different health assessment models under different

operating regimes.

4.4.3 Linear models for multi-regime health assessment

Many supervised health assessment model can be employed here. Yan et al.

[2004] used a Logistic Regression model to convert the multi-dimensional features into

health indices, which were then used to build an ARMA model to predict machine

performance. The logistic regression model for health assessment has the following

form

z = h
(p)
HA(x; Θ

(p)) =
exp

(
θ
(p)
0 +

∑N
n=1 θ

(p)
n · xn

)
1− exp

(
θ
(p)
0 +

∑N
n=1 θ

(p)
n · xn

) + ε (4.6)

where Θ(p) = (θ
(p)
0 , θ

(p)
1 , ..., θ

(p)
N ) are N+1 model parameters for the pth operating

regime, and ε is the noise term. The method to prepare data for training the logistic

regression model is similar to the generic training method described in the previous

section.

The merit of a logistic regression model is that it will produce a health index

within the range of 0 and 1 strictly. However, through the experiments performed

in this thesis it is found that logistic regression, by its nonlinear nature, will distort

the original degradation trend exhibited in the feature series; more specifically, the

generated health index series becomes insensitive near the end life of the system which

will lead to larger RUL prediction error using TSBP approach.

To preserve the original trend in the feature series, a linear regression model was
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used for health assessment in the earlier research on TSBP [Wang et al., 2008].

z = h
(p)
HA(x; Θ

(p)) = θ
(p)
0 +

N∑
n=1

θ(p)n · xn + ε (4.7)

Unlike logistic regression, linear regression cannot ensure the health indices obtained

to be strictly confined to the range of 0 to 1; however, this does no harm to RUL

prediction using the TSBP approach, which does not rely on explicit thresholds of

the health index to determine a failure condition.

4.4.4 Issues of linear models for health assessment

Both approaches discussed above belongs to (generalized) linear models. These

models (a single model by itself) cannot fit well for data with mixture degradation

trends. In other words, they require each variable to have consistent trend, either

rising or falling, for all the training instances. For many real-world problems, however,

there may be multiple failure modes, causing a certain feature to show different trends

towards the end life in different instances. And in some cases, training instances with

different failure modes may not have been classified adequately and thus have been

mixed together in the training data, which will cause poor fitting using a (generalized)

linear model.

Considering a case that run-to-failure data are collected from multiple instances of

a system. Two features are extracted from the data. Feature 1 exhibits a rising trend

over time when the system operates towards its end life. The same trend is shown

for all the instances. When this feature from all the instances is plotted together

in one figure with the last time stamp of each instance aligned, clear trend can be

observed, as shown in Fig. 4.3. Feature 2, however, exhibits a rising trend when an

instance fails due to one failure mode whereas exhibits a totally different trend for

another failure mode. Therefore feature 2 at near-end-life of the system shows a large
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variation. If feature 2 is included to build the local health assessment model, the

model sensitivity will be compromised.

Failure mode 1

1 e 
2

Fe
at

ur
e

Fe
at

ur
e

Failure mode 2

Figure 4.3: Features exhibit different trends when multiple failure modes exist

Therefore using generalized linear models will require careful selection of features

to include in the model. Only those features that exhibit consistent trend for all the

instances (failure cases) should be included. Obviously, excluding many other features

for modeling will cause potential loss of certain important information regarding to

the system’s degradation and failure patterns.

4.4.5 Nonlinear health assessment models

One method to overcome the aforementioned challenge is to use a nonlinear model

(or a combination of multiple linear models) for supervised health assessment. For

example, a Neural Network can be used to map the features to the health index,

z = fNN(x; Θ). Training of the NN model follows the generic training method for
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supervised health assessment models (Section 4.4.2). Multiple neural networks have

to be created for different operating regimes.

Another method to address the challenge is to use the MQE-based health

assessment method [Huang et al., 2007] derived from the SOM. The faulty data

(with multiple fault modes) can be used to train an SOM; for any feature vectors,

the MQE can be computed to represent the level of “fault” – MQE in nature is the

minimal distance to all the faulty samples. With a certain normalization process to

the obtained MQE, a valid health assessment model(i.e. comparable health indices

under different regimes) can be derived.

Nevertheless, the nonlinear health assessment methods will distort the original

trend of the feature series somehow. In addition, by converting data with potentially

multiple faulty modes into a 1-D health index, the difference in the degradation

patterns will be neglected. This will eventually compromise the power of trajectory

modeling using TSBP approach. Therefore in practice, the health-level RUL

prediction is less preferable than the feature-level health assessment.

4.5 Multi-regime data normalization

The multi-regime data normalization approach is used to prepare data for feature-

level RUL prediction. With this approach, the N features will be normalized

individually into a nominal range under each operating regime and then form a new

time series with the original feature dimension (Fig. 4.4). After that, the dimension of

the new time series will be reduced through Principal Component Analysis (PCA) to

remove linear correlations among the transformed features. The resultant data might

still be multi-dimensional, but are ready for TSBP modeling. The key procedures of

this approach will be discussed in details.
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Figure 4.4: Data preparation for RUL modeling through multi-regime data

normalization

4.5.1 Data normalization

Suppose each sample of x is classified into one of the P operating regimes Op and

forms sample set {x}(p) = {xi|ui ∈ Op} based on the clusters with hard boundaries

determined by the operational conditions u. Then the sample mean and standard
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deviation for each regime can be computed

x̄(p) = Mean({x}(p)) (4.8)

s(p) = Std({x}(p)) (4.9)

For the ith cycle with regime membership Cp = Member(ui ∈ Op), the sample xi will

be transformed into yi as follows:

yi = (y1i, y2i, · · · , yNi)
T

yni =

∑P
p=1 Cp · (xni − x̄

(p)
n )/s

(p)
n∑P

p=1 Cp

, n = 1, ..., N (4.10)

where xni, x̄
(p)
n and s

(p)
n are the nth element of the vectors xi, x̄

(p) and s(p). In case of

discrete regimes, the transform can be simplified as

yni = (xni − x̄(p)
n )/s(p)n , n = 1, ..., N (4.11)

p = arg max
k=1,..,P

Ck

In order for the normalized features in each operating regimes to be equivalent, this

normalization method assumes that an operating condition has identical probability

to occur at any cycle:

Pr(ui ∈ Op) = Pr(uj ∈ Op), ∀i, j = 1, ..., E (4.12)

This ensures the sample mean and standard deviation computed from those samples

under an operating regime are unbiased estimation of the mean and standard

deviation for the feature in the said regime. Finally, this will allow to merge the

normalized feature in their original timestamps without altering the characteristics

of the system’s full degradation process. The resultant time series is noted as

YI = {y1,y2, ...,yI}.
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4.5.2 Variable selection vs. variable weighting

Variable selection (a.k.a. feature selection, sensor selection, variable subset

selection) in data modeling has been an important topic for pattern analysis and

machine learning. Inclusion of irrelevant or redundant variables may be detrimental

to the performance of a prediction model, causing over-fitting or reduced sensitivity.

The intuition of variable selection is to maximize the relevancy and minimize the

redundancy in the variable subset.

There are two major variable selection approaches, the wrapper approach and the

filter approach [Kohavi and John, 1997]. With the wrapper approach, performance

of the target model (e.g. the classification rate for a classification model, or MSE

for a regression model) built with different variable subsets is evaluated, and the

optimal variable subset is the one that can maximize the model performance. The

wrapper approach usually requires a cross-validation process to evaluate the model

performance repetitively. If the number of variable candidates is small, it may

be possible to performance an exhaustive search on all the combination of the

variables, resulting 2n possible subsets for n variables. When n is large, exhaustive

search becomes infeasible. Many methods such as forward selection and backward

elimination [Guyon and Elisseeff, 2003] have been designed to address the searching

problem. Although the wrapper approach is straight forward and universal, it may

require massive amount of computational, especially in the case that variable selection

constitutes only a very preliminary task in a complex data modeling task. For

the RUL prediction problem considered here, the TSBP approach involves multiple

processing procedures. There are too many parameters that can affect the final

performance. The optimal variable subset obtained using the wrapper approach may

cause over-fitting to the problem.
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The filter approach instead uses local performance criteria for variable subset

selection, which is not tuned/bound to a specific target model. The filter approach

may use different local criteria for variable selection, such as the correlation criteria,

mutual information criteria, etc. [Guyon and Elisseeff, 2003]. It is also possible to

define a simpler, local, linear predictor, which is different from the more complex

global model, and whose performance can be used as a criteria for applying the

wrapper approach (e.g. in [Bi et al., 2003]). Selection of local criteria is critical

for the filter approach. For the RUL prediction problem, the criteria of variable

relevancy can be defined on the ability to reveal the degradation trend of the system.

One criteria can be defined to select those variables with the largest separation of

the early-stage and near-end-life feature sets for the system. However, RUL modeling

for a prognostics application is a regression problem; variable relevance in this case

is more than the classification capability. For degradation modeling, intuitively, the

slower characteristics in a feature time series reflect the system’s degradation behavior

whereas the fast characteristics are usually either noise or irrelevant to degradation.

Here, the author proposed an empirical criteria, called Empirical Signal-to-Noise

Ratio (eSNR), for variable relevance evaluation.

Let {si} be a 1-D time series representing the features of the system evolving from

early age to the end life. Let {si} be the time series after smoothing {si} by a certain

filtering or smoothing algorithm. Then the eSNR of this variable can be calculated

as the ratio between the variance of the smoothed time series and the original time

series:

eSNR(s) = var({si})/var({si} (4.13)

For a variable whose global variance (over the whole time series) is mainly attributed

to the local variance (variance within a shorter period in the time series), the smoothed
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time series will have a much smaller variance compared to the original, and thus will

have a smaller eSNR value. Therefore variable selection can be performed based on

the ranking given by eSNR.

However, variable selection based on single variable ranking has multiple

limitations. It has been shown that a variable that is useless by itself can be useful

when taken with others, and that two variables that are useless by themselves can

be useful together [Guyon and Elisseeff, 2003]. Another problem is that it is hard

to decide the number of high-ranking variables to retain. Intuitively, fusion of more

relevant variables may help to suppress noise and reduce uncertainty exhibited by

individual variables. In addition, Hall [1999] argued that feature selection may

degrade model performance in cases where some variables are eliminated which are

highly predictive of very small areas of the instance space.

These reasons have led us to reconsider the problem of relevancy and redundancy

of variables from another perspective, i.e. the variable weighting approach Hall [1999].

The variable weighting approach can preserve variable relevancy; however, it does

not reduce the number of variables and thus does not reduce variable redundancy.

Therefore, the Principal Component Analysis (PCA) (see Section 4.5.3) can be

applied following variable weighting to remove correlation or redundancy.

In this thesis, the variables are weighted based on their eSNR given by Eq.(4.13).

Each variable yn in the normalized feature vector y will be scaled by a factor that is

equal to the eSNR of the nth variable.

ỹn = yn · eSNR(yn) (4.14)

Those variables with large local variance (i.e. low approximate SNR) will be scaled

down more. The weighted features ỹ will be processed by PCA. Note that variable

weighting is necessary before applying PCA because PCA does not differentiate
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variable variance caused by noise (local) or system degradation (global). PCA may

fail to capture the variance direction that is most relevant to system degradation.

This is easy to understand because PCA disregards the timing information in a time

series.

4.5.3 Principal Component Analysis

The weighted variables in ỹ are potentially correlated with each other. Correlated

variables may compromise the RUL prediction models and bias the prediction results.

PCA is a common technique to transform potentially correlated variables into a

smaller number of uncorrelated variables. PCA is defined [Jolliffe, 2002] as an

orthogonal linear transformation that transforms the data to a new coordinate

system such that the first coordinate (called the first principal component, or

PC) represents the direction of the greatest variance of the original data, and the

second coordinate/PC represents the direction of the second greatest variance that is

orthogonal to the first PC, and so on.

The Karhunen-Loéve transform (KLT) [Jolliffe, 2002] is a common method to

compute PCA (see Appendix A). In short, PCA applies the following transformation

to all the samples ỹ from both training and test instances:

z = (z1, z2, . . . , zM)T = V T
M · (ỹ − ¯̃y) (4.15)

where ¯̃y is the mean of ỹ, and VM consists of the eigenvectors of the covariance matrix

of ŷ corresponding to the first M PCs. The number of significant PCs to retain is

decided by a threshold, e.g. 90%, on the percentage of total variance explained by

the selected PCs. The resultant PCs form a new time series lZI for each training or

testing instance, which are ready for TSBP modeling.
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4.6 Beyond data preparation: issues of data collection

Up till now, the issue of data preparation for TSBP modeling has been discussed

from the perspective of algorithm development, including the common operations such

as denoising, feature extraction and selection, normalization, and so on. However,

from the perspective of prognostics system design, the scope of data preparation can

be further extended to the data collection stage, which directly affects the quality of

the collected data. Data quality a crucial factor on the performance of a prognostics

model and the success of a prognostics application.

Data quality, on the context of predictive analysis, is more than the signal quality,

such as noise level, for each single measurement; it is also tightly related to the data

collection plan. Unlike the classic subject of Design of Experiments (in biomedical

applications, for instance), data collection in prognostics applications are not only

necessary in the development phase (e.g. for test of hypothesis), but also indispensable

in the deployed solution for an engineering system that operates in the field. The in-

field condition will prevent the data collection plan from being fully controlled. Data

collection designing for prognostics applications has to take into consideration the

feasibility to carry out the plan with minimal interference to the normal operation of

the system while trying to ensure the best data consistency.

RUL prediction requires trend analysis on the time series of the system’s health

condition. Consistency of data samples in the time series plays an important role for

modeling. The TSBP model, as well as many other RUL prediction models, assumes

that the data are collected in cycles consistently and the system’s operation in each

cycle causes comparable wear (see the assumptions of TSBP in Section 3.5). Data

consistency can be addressed from the following two perspectives:

• Consistency of measurement timestamps
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• Consistency of measurement condition

An engineering system may have a long life that makes continuous measurement

impractical in most applications. Therefore the system may have to be instrumented

at intervals, which leads to the concept of measurement timestamps. The

measurement time stamp is a macro-level concept that has to be differentiated from

the micro-level signal sampling frequency (e.g. for collecting vibration signal). For

example, measurement of bearing vibration in a rotary machine may have a sample

frequency of 10kHz, but the measurement may take place for only 2 seconds every

hour. Here the measurement time stamp will be related to the 1-hour interval. In

general, the timestamps of measurement can be one of the following:

• Calendar time, e.g. mm/dd/yyyy

• Operation time, e.g. hours in operation

• Operation cycle counter, e.g. 1,2,3,...

Calendar time can be used to timestamp the measurements if the system

continuously operates without apparent interruption due to weekends or holidays,

such as a wind turbine. With calendar time as the time stamp, it is assumed that

the load of the system in average is comparable for each time period; variations in

load will be treated as noise and will be handled during data processing. Sometimes

the operation time of a system can be used as a more accurate time stamp for the

measurements if the system operates with intermittent stops, such as a machine tool

or equipment in the factory floor. Again, it is assumed that for each unit time, the

system will perform a comparable level of work. For those systems operating in cycles,

e.g. a product line producing discrete products, measurement can be carried out and

timestamped by the number of operational cycles. Operational cycles provide the

most consistency in the load to the system.
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The measurement timestamps reflect a period of operation rather than a single

moment. The exact measurement method during each time interval may have one of

the following scenarios:

• Snapshot at an arbitrary moment within the period

• Snapshot at a moment of similar conditions within the period

• The averaged measurement over the whole period, possible from many

operational conditions

The system may or may not operate under identical operational conditions during

the entire measurement interval. If yes, a measurement snapshot may be taken at any

moment within the period; this also applies for the collection of parameters related to

the system setup, which may keep constant for the entire period. If the operational

conditions changes over over time, it is desirable to have measurement snapshots at

a moment with similar operational conditions. Such moment can be found relatively

easily in a cycle-based production line but may be hard in the case of stochastically

changing operational conditions, such as the case of a wind turbine. In the later case

it may be necessary to record the operating conditions during the measurement as

well. If the operating conditions are too complex to record precisely and completely,

such as the case of a heavy mining machine operating in the field, the option is to

record the statistics of the measurements and conditions (e.g. average, minimum,

maximum, etc.) over the period.

In summary, data collection from a real system during its normal operation has

to be designed properly to ensure that the data quality is as close to the modeling

assumptions as possible. In a certain case, a specially designed test cycle can be

forced inserted into the intervals of the system’s normal operation, e.g. the so-called
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Fixed Cycle Feature Test (FCFT) method used by Liao and Lee [2009], in order to

ensure a consistent instrumentation condition.
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5 Case Study: Turbofan Engine RUL

Estimation

In this chapter, the developed TSBP approach will be validated using the turbofan

engine degradation simulation data publicly available from NASA Ames Prognostics

Data Repository [Saxena and Goebe, 2008].

5.1 Simulation setup and data description

Saxena et al. [2008b] conducted a series of run-to-failure simulations to study

turbofan engine degradation. The simulation model was built on CMAPSS

(Commercial Modular Aero-Propulsion System Simulation) developed at NASA

Army Research Laboratory [Frederick et al., 2007]. CMAPSS is able to simulate the

operation of an engine model of the 90,000 lb thrust class under variable operational

conditions, including altitude, Mach number, sea-level temperature. In addition,

the engine thrust can be controlled by the Throttle Resolver Angle (TRA) value,

which can be treated as another operational condition as defined in Section 4.2. By

modifying 13 health parameters in CMAPSS, such as the efficiency or flow modifiers

of these components, the user can simulate the effects of faults and deterioration

in any of the engine’s five rotating components, including fan, LPC (Low-Pressure

Compressor), HPC (High-Pressure Compressor), HPT (High-Pressure Turbine), and

LPT (Low-Pressure Turbine), as shown in Fig. 5.1. CMAPSS also provides 58

variables for different outputs.

In the simulation conducted by Saxena et al. [2008b], 21 of the 58 output variables

are recorded to simulate sensor measurements to the system, which include, for
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(b)(a) ( )( )

Figure 5.1: Structure of the turbofan engine simulated in CMAPSS [Frederick et al.,

2007; Saxena et al., 2008b]. (a) Simplified engine diagram (b) Engine modules and

their inter-connections

instance, temperature, pressure, and speed at various points in the system. Another

3 variables representing the engine operating conditions are recorded, namely altitude

(kilo feet), Mach number (speed) and Throttle Resolver Angle (TRA) value (thrust

setting). By running the simulation multiple times under different flight conditions

(and thus engine conditions), data from multiple instances of the same engine model

are collected. For each run of the simulation, the engine experiences complete run-

to-failure operations, i.e., starting from brand new (with different degrees of initial

wear and manufacturing variation), developing faults over a number of flights from

one location to another, and finally reaching the failure condition measured by a set

of predefined criteria. The engine life is defined as the number of total flight cycles in

which the engine is in operation. Depending on various factors, the amount and rate

of damage accumulation for each engine instance will be different, causing variable

engine life. The recorded data for each engine instance provide a track of the engine’s

condition throughout its usage history in the format of a 24-dimensional time series

(3 operating conditions and 21 sensor measurements for each flight cycle). During

80



www.manaraa.com

each flight cycle only a snapshot of these 24 variables is taken to represent the engine

condition for the current cycle. An excerpt of the multivariate time series from one

instance is shown in table 5.1.

Table 5.1: Sample run-to-failure data from one engine instance

Cycle Operating

Setting 1

Operating

Setting 2

Operating

Setting 3

Sensor

1

Sensor

2

. . . Sensor

21

1 42.0049 0.8400 100.0 445.00 549.68 . . . 6.3670

2 20.0020 0.7002 100.0 491.19 606.07 . . . 14.655

...
...

...
...

...
...

...

321 42.0058 0.8400 100.0 445.00 549.71 . . . 6.4590

Need to mention that the background information on the engine simulation model

is not a must-to-know to perform RUL estimation using TSBP approach. Actually,

when a data set created by this simulation was first provided to the 2008 PHM

Data Challenge competition, the data was described as multivariate run-to-failure

time series from multiple instances of an unspecified engineering system. The only

information available was that the 24 dimensions for each cycle includes 3 condition

variables and 21 sensor measurements. No failure mode information nor failure

criteria was provided – for TSBP approach, they are not necessary though. TSBP

is developed to circumvent the needs for explicit information on failure modes and

failure criteria.

NASA has provided 4 data sets generated from 4 independent simulation

experiments, each with different settings such as the number of engine operational
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conditions, potential faulty components, and so on. Therefore only those instances

in the same data set can be considered to from identical systems. Data sets 1 and

2 includes only one fault modes (HPC degradation) while data sets 3 and 4 includes

two (HPC degradation and fan degradation). Data sets 1 and 3 include a single

operational condition while data sets 2 and 4 includes six. Data set 4 represents the

most complex case among the four. Summary of the 4 data sets are shown in Table

5.2.

Table 5.2: Experiment settings of the four data sets

Data Sets

# 1 # 2 # 3 # 4

Number of fault modes 1 1 2 2

Number of operating conditions 1 6 1 6

Number of training units 100 260 100 249

Number of test units 100 259 100 248

Each data set is further divided into training and test subsets. The training set

includes instances with complete run-to-failure data, which can be used to develop

life prediction models. The test set includes instances with data up to a certain cycle

prior to system failure, which are used for RUL estimation and algorithm performance

evaluation. Note that the test instances are also simulated run-to-failure; even though

only an earlier portion of the history is provided in the data set, the actual life of

the test instances are still known – the ground true RUL of the test instances are

also provided for prediction validation purposes. The actual failure mode for each

training instance in data set 3 and 4 is not labeled.
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In this study, the 4th data set is used to experiment and validate the proposed

RUL estimation method. However, the provided test data set will not be used for

algorithm validation, because it contains instances with incomplete run-to-failure data

and thus not suitable for the performance evaluation method that relies on sequential

RUL predictions at every time stamp throughout the instance’s life. Therefore, in

this study, the 249 instances in the training data set will be used for both training and

testing. Out of the 249 instances, 99 are randomly selected and held as a validation

set and the rest 150 are used for model development.

5.2 Performance metrics

An RUL prediction algorithm can be assessed from different perspective with

various performance metrics. Selection of performance metrics has been a rapid-

developing research topic. The traditional accuracy-based, precision-based and

robustness-based performance metrics adopted from other prediction/forecasting

or classification applications has limitations in providing a fair assessment to the

algorithm’s true merits and drawback in the context of prognostics applications.

Therefore, much research in the society of PHM has been put on the developing

of a systematic approach for performance evaluation of RUL prediction algorithm.

Inspired by the performance evaluation framework proposed by Saxena et al.

[2010], four performance metrics are defined here, either directly adopted or with

modifications. These metrics are defined on a sequence of RUL predictions for each

instance, i.e. multiple predictions made at different time along the history of the

instance with provided historical data up to that time. The earliest time at which a

prediction is made is noted as tp, meaning the start of RUL prediction routine, and

the last time is noted as tEoUP , meaning the End of Useful Predictions.
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5.2.1 Prediction Horizon

Prediction Horizon (PH) is defined as the first RUL prediction that satisfies the

α-bound criteria:

PH = tE − tiα (5.1)

where iα is the index of the first RUL prediction that satisfies the α-bound criteria.

For a RUL prediction model that gives point estimation of RUL ri at each time stamp

ti, the α-bound criteria evaluates whether ri falls within the α-bound of the true RUL

r∗i (≡ tE − ti), as illustrated in Fig. 5.2:

tiα = min{ti|ti ∈ [tP , tEoUP ], r
∗
i − α · tE ≤ ri ≤ r∗i + α · tE} (5.2)

300
Prediction Horizon (20% error)

200

250

PH = 152 cycles
tP PH�=�152�cycles

150

200

R
U

L

tEoUP tE

50

100
EoUP E

50 100 150 200 250 300
0

Time Index ( i)

Figure 5.2: Prediction Horizon
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For a RUL prediction model that provides density estimation of RUL π(ri), the

α-bound criteria evaluates whether the cumulative probability of the predicted RUL

within the α-bound of the true RUL is greater than a parameter β(0 < β < 1):

tiα = min{ti|ti ∈ [tP , tEoUP ],

∫ r∗i +α·tE

r∗i −α·tE
π(ri)dri ≥ β} (5.3)

Note that PH defined for density estimation (with a β larger than 0.5, for instance)

are more robust and more conservative than that for point estimation. PH given by

Eq.(5.2) is usually smaller than PH given by Eq.(5.3). Therefore the PH’s computed

with these two methods are not comparable. One has to use the point-estimation

method to compare two algorithms if one of them gives density-estimation and the

other does not.

By definition, the PH metric does not prevent predictions made within PH to

jump out of the α-bound; therefore additional performance metrics should be used

to further evaluate whether the algorithm satisfies other requirements [Saxena et al.,

2010].

5.2.2 Rate of Acceptable Predictions

Rate of Acceptable Predictions (AP) evaluates the rate of the predictions for all

ti ≥ tH that fall into a cone-shape region of acceptable prediction errors, as illustrated

in Fig. 5.3. The threshold tH can be chosen as PH computed above or a certain

specified value. This metric is defined here as an alternative to the α−λ performance

metric defined by Saxena et al. [2010].

AP = Mean({δi|tH ≤ ti ≤ tEoUP}) (5.4)
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For point estimation of RUL, δi is defined as follows

δi =

⎧⎪⎪⎨
⎪⎪⎩
1 if (1− α)r∗i ≤ ri ≤ (1 + α)r∗i

0 otherwise

(5.5)

For density estimation of RUL, δi is defined as follows

δi =

⎧⎪⎪⎨
⎪⎪⎩
1 if

∫ (1+α)r∗i
(1−α)r∗i

π(ri)dri ≥ β

0 otherwise

(5.6)

While PH is defined based on a uniform α-bound given by ±αtE, AP is defined

with a shrinking cone-shape α-bound given by ±αt∗i . Therefore AP applies a more

strict requirement to the prediction errors.

Rate of Acceptable Predictions ( � = 0 2)

250

300
Rate of Acceptable Predictions ( � 0.2)

t PH = 152 cycles

150

200

U
L

tP PH�=�152�cycles

100

150

R
U

tEoUP tE

0

50

50 100 150 200 250
Time Index ( i)

Figure 5.3: Rate of Acceptable Predictions
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5.2.3 Relative accuracy

Relative accuracy (RA) evaluates the mean absolute percentage errors for all

ti ≥ tH . Compared with the AR metric, RA provides a quantitative measure of

the prediction accuracy within the specified RUL.

AR = 1−Mean({|ri − r∗i |
r∗i

|tH ≤ ti ≤ tEoUP}) (5.7)

This metric is defined for point estimation of RUL only. For density estimation, a

central tendency point estimate should be computed first Saxena et al. [2010] to get

ri. In this study, the point with 50% cumulative probability is used as the point

estimate of RUL.

5.2.4 Convergence

Convergence (CG) evaluate how fast the performance of the predictions improves

over time when more historical data become available. Give a performance metric M

that can be evaluated at each time stamp ti, CG is defined as

CG = 1−
(

1
2

∑EoUP
i=P (t2i+1 − t2i )Mi∑EoUP
i=P (ti+1 − ti)Mi

− tP

)
· 1

tEoUP − tP
(5.8)

The CG metric has a value between 0 and 1. If Mi decreases as performance improves

(e.g. mean absolute error, standard deviation of errors, etc.), then a value larger than

0.5 for CG will indicate converging for the prediction; the larger CG is, the faster the

convergence is. However, if Mi increases as performance improves (e.g. the AP and

RA performance), then a value smaller than 0.5 for CG will indicate converging; in

such case it is better to define CG with a slight change to ensure consistency of CG

value:

CG =

(
1
2

∑EoUP
i=P (t2i+1 − t2i )Mi∑EoUP
i=P (ti+1 − ti)Mi

− tP

)
· 1

tEoUP − tP
(5.9)
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In this case study, Absolute Error is chosen as the performance metric M for

calculating CG.

5.2.5 Performance score for parameter optimization

To evaluate the algorithm performance based on multiple prediction series from

K test instances, the median of the K performance scores for each metric will be

used:

PH = Median({kPH}K)

AP = Median({kAR}K)

RA = Median({kRA}K)

CG = Median({kCG}K) (5.10)

An objective function is necessary to compare the performance of different models,

especially during model parameter optimization. Among the four metrics, PH has a

unit of time while the others have a value between 0 and 1 (with 1 meaning perfect).

PH will be used as preliminary requirement for the performance while a weighted

sum of the other three will be used as the objective:

maximize w1 · AP + w2 ·RA+ w3 · CG (5.11)

where the weights w1, w2, w3 should be chosen, ideally, based on the design

requirement of the prognostics algorithm, which is not defined for the current case

study. Here the weights are set as follows, with more emphasis on AP, a little less on

RA and the least on CG:

w1 = 0.6, w2 = 0.3, w3 = 0.1 (5.12)
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5.3 TSBP modeling, prediction and evaluation

5.3.1 Model training

As the raw data provided are already in the form of multivariate time series, no

feature extraction procedures are necessary. However the raw data are collected from

6 operational conditions/regimes, i.e. the data for different cycles may be collected

under any one of the 6 regimes. As shown in Fig. 5.4. The sensor readings can

hardly show any trend for the life cycle of the system if the operating regimes are

not differentiated; within one operating regime, the sensor readings do show a rising

trend. In this study, the multi-regime data normalization method described in Section

4.5 is employed to preprocess the raw data so that the effect of operating regimes can

be removed.
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Figure 5.4: Raw data of sensor No. 2 from one training instance (a) All operating

regimes together (b) Operating regime 4 only

The three variables for operational conditions are used to cluster the operating
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regimes. Table 5.3 shows the cluster center and radius of the operating regimes

obtained from a simple k-means clustering algorithm. It shows that the six operating

regimes are far separated and can be considered as discrete - this will greatly simplify

the processing of data normalization.

Table 5.3: Six operating regimes: cluster center and radius

Cluster center Cluster radius

Condition 1 Condition 2 Condition 3

42.0030 0.8405 100.0000 0.0030

35.0030 0.8405 100.0000 0.0030

0.0015 0.0005 100.0000 0.0011

20.0030 0.7005 100.0000 0.0030

25.0031 0.6205 60.0000 0.0030

10.0030 0.2505 100.0000 0.0030

Then each sensor will be normalized individually using the sample mean and

variance in each operating regime (see Section 4.5.1). A few of the normalized sensors

from selected training instances are shown in Fig. 5.5, where each row is for one

instance and each column is for one sensor. It shows that the first two sensors (No.

2 and 8) exhibit consistent rising trend in different instances while the rest exhibit

two different trends, which can be possibly interpreted as the effect of the two fault

modes in the data set.

With the multi-regime data normalization method, sensor weighting is employed

instead of sensor selection. However, a rough screening of the given 21 sensors are still

necessary to exclude binary- or constant-value sensors for TSBP modeling. All the
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Figure 5.5: Normalized sensor data of selected training instances

identified 13 continuous-value sensors, namely No. 2, 3, 4, 7, 8, 9, 11, 12, 13, 14, 15,

20 and 21 are included for further processing. Then, the variable weighting method

described in Section 4.5.2 is applied to differentiate the contribution of relevant sensors

from irrelevant sensors. Table 5.4 shows the weights for the selected 13 sensors using

the sensor’s eSNR.

Then PCA is applied to remove the linear correlations among the variables.
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Table 5.4: Empirical Signal/Noise Ratio

Sensor index 2 3 4 7 8 9 11

eSNR 0.7314 0.7337 0.8364 0.8959 0.7533 0.8936 0.8744

Sensor index 12 13 14 15 20 21

eSNR 0.9048 0.7549 0.9009 0.9132 0.7003 0.6986

The number of significant PCs to retain is decided by a threshold on the minimal

percentage of total variance explained by the selected PCs. The threshold is set to 90%

and three PCs (M = 3) are retained. The samples from training and test instances are

then transformed to the PC domain using Eq. (4.15). During degradation trajectory

abstration, the abtained PC series will be smoothed using kernel regression; the

resultant time series are recorded as non-parametric degradation models lG, each

from one training instances. A few examples of the PC series and the corresponding

degradation models (smoothed trajectories) are shown in Fig. 5.6.

5.3.2 RUL estimation

During testing, for each test instance, multiple RUL predictions will be made at

different cycles along the instance’s life; each prediction is made based on the up-to-

date data till the corresponding time Prediction are made between cycle tP and tEoUP

at each time stamp spaced with interval of Δt. The following choices are used in this

case study:

tp = 50, tEoUP = tE − 10,Δt = 5

The local RUL predictions given by individual degradation models is forced to be

constrained to the limit of 350 cycles. Any local predictions longer than 350 cycles
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Figure 5.6: PC trajectories and the smoothed PC trajectories from selected training

instances

will be treated as prediction outliers and will not be included in RUL aggregation.

This adjustment help to reduce the predicted uncertainty bound produced by TSBP.

Two examples of RUL predictions are shown in Fig. 5.7. Both cases show the

90% confidence interval and the central tendency of the RUL estimate. Case (a)

shows desirable performance, where the predictions converge to the true RUL as time

increases, whereas case (b) demonstrates undesirable performance.
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Figure 5.7: Trajectory of RUL predictions vs. Time (a) Predicted RULs converge to

the actual RUL (b) Predicted RULs show a large bias towards the end of life

5.3.3 Model tunning

5.3.3.1 TSBP model settings

Under the framework of TSBP approach for RUL estimation, there are more than

one option for the distance definition and more than one free-choice parameters in

the four procedures. These options or parameters are summarized in Table 5.5; the

method to decide the parameters are also included.

5.3.3.2 Method for model parameter tuning

Two parameters, the kernel width ρ for degradation trajectory abstraction and the

spread ratio γ for distance evaluation, have to be decided for an TSBP model. In this

study, the n-fold cross-validation method is used to compare the model performance

with different settings. The procedures for cross-validation are described as follows:
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Table 5.5: Options in TSBP modeling

Procedure Algorithm Parameters How to decide pa-

rameters

Data preparation Multi-

regime data

normalization

Variables to in-

clude

Include all; apply

variable weighting

(Eq. (4.14))

Degradation trajectory

abstraction

Kernel regres-

sion

Kernel width ρ

(Eq.(3.9))

Cross-validation

(See below)

Similarity evaluation MED-TL Spread ratio γ

(Eq.(3.15))

Cross-validation

(See below)

MED-DA Spread ratio γ

(Eq.(3.15))

Cross-validation

(See below)

MED-TL-DA Spread ratio γ

(Eq.(3.15))

Cross-validation

(See below)

Model aggregation Kernel density

estimation

Bandwidth h

(Eq.(3.25))

Adaptive

algorithm (Section

3.4.3)

1. The samples(training instances) are randomly divided into n mutually exclusive

subsets of approximately equal size, called n folds.

2. Specify a model setting;

3. Each time one out of the n folds are held for test and the remaining n− 1 folds

are used for training;

4. Repeating step (3) n times until each of the n folds has been used for test once;

5. Performance metrics are applied to the prediction results at each iteration, and
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the overall performance across n iterations is used as the performance score for

the model with the chosen setting;

6. Repeat step (2–5) for all the model setting to be tested.

In this study, 5-fold cross-validation is applied. For each cross-validation experiments,

the four performance metrics described in Section 5.2, namely PH, AP, RA and CG,

will be computed. The total performance score, 0.6×AP+0.3×RA+0.1×CG, will

be used as the final measure to rank model performance.

As experimented in this case study, one round of cross-validation (150 instances,

each including multiple RUL predictions) may take up to hours to finish while using

the TSBP approach. Due to this high computational load, the model parameters will

not be easily optimized using classical search methods. Therefore, only a number of

pre-selected values for the parameters will be tested. In addition, the two parameters

will not be optimized simultaneously, but rather in sequence, in order to further

reduce the computational load. The sequence to decide the two parameters will

follow the reverse order of the data processing procedures. In other words, the spread

ratio γ for distance evaluation will be tuned first; and then the kernel width ρ for

degradation trajectory abstraction will be tuned later with the spread ratio γ fixed

with the selected best value.

In this study, the model performance with three different settings of sensor subsets

will be compared too. The purpose of the comparison is to demonstrate how the

selection of sensor subset affects the model performance, but not intended to optimize

the selection.

5.3.3.3 Tuning spread parameter for distance evaluation

Cross-validation experiments are conducted with a few choices of spread parameter

γ while fixing the choice of other options and parameters. The settings of TSBP model
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are summarized in Table 5.6.

Table 5.6: Tuning spread parameter for distance evaluation

Procedure Algorithm and Parameters

Data preparation Multi-regime data normalization with variables No. 2, 3,

4, 7, 8, 9, 11, 12, 13, 14, 15, 20 and 21

Degradation trajectory

abstraction

Kernel regression with kernel width ρ = 10

Similarity evaluation

MED-TL with γ=0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.75, 1,∞
MED-DA with γ=0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.75, 1, ∞
MED-TL-DA with γ=0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.75, 1, ∞

Model aggregation Kernel density estimation with adaptive selection of

bandwidth h

The performance evaluation results for TSBP with the three distance definitions

and different spread parameters are shown in Table 5.7, Table 5.8 and Table 5.9

respectively. Based on the total performance score, we can see that the best setting

is the MED-DA distance with spread ratio γ = 0.3.
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5.3.3.4 Tuning kernel width for degradation trajectory abstraction

With the distance evaluation settings fixed to the best choice (MED-DA

distance with π = 0.3) from the previous tuning step, the kernel width ρ for

degradation trajectory abstraction will be further tuned through cross-validation

experiments. Experiments with the following choices of ρ are conducted: ρ =

3, 5, 7, 10, 15, 20, 25, 35, 50. The algorithm performance for these choices of ρ are

summarized in Table 5.10. It shows that with ρ = 7 and the previously optimized

spread ratio γ = 0.3, the algorithm yields the best performance.

5.3.3.5 Performance comparison with different sensor subsets

As mentioned before, sensor selection is not optimized in this case study, but

instead, variable weighting is applied. Another three experiments are conducted to

compare the algorithm performance using different sensor subset rather than sensor

weighting.

• Exp 1: Use the same sensor set as before but without applying variable

weighting .

• Exp 2: Uses sensor No. 2, 3, 4, and 11, which exhibit consistent monotonic

trend (either rising or falling as cycle increases) for both failure modes. These

sensors can best linearly classify early-life from end-life conditions.

• Exp 3: Uses sensor No. 12, 14 and 15, which are the top ranking variables in

terms of eSNR as discussed in Section 4.5.2. The value of eSNR can be found

in Table 5.4.

All three experiments use the MED-DA distance definition and the optimal

parameters γ = 0.3, ρ = 7 from previous tuning procedures. Table 5.11 summarizes

the cross-validation performance scores for these three experiments as well as those
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Table 5.11: Algorithm performance with different sensor subsets without variable

weighting

Performance Metrics
Experiments

Original Exp1 Exp2 Exp3

PH: Prediction Horizon (α = 0.2, β = 0.8) 100.5 93 68.5 82

AP: Rate of Acpt. Pred. (tH = 80, α = 0.2) 0.6214 0.5167 0.4667 0.4667

RA: Relative Accuracy (tH = 80) 0.7980 0.7880 0.7932 0.7562

Convergence (tH = 80) 0.6278 0.6281 0.6383 0.6141

Total: 0.6 AP+0.3 RA+0.1 CG 0.6750 0.6092 0.5818 0.5683

for the original algorithms with sensor weighting. It shows that sensor weighting

method proposed in this thesis outperforms all the other three scenarios of sensor

selection.

5.3.4 Performance evaluation using the validation set

The best model settings obtained from the aforementioned cross-validation

experiments are summarized in Table 5.12.

With these settings, TSBP model are retrained using all 150 training instances

and then validated using 99 test instances in the validation set (refer to the data

division method described in Section 5.1. The performance metrics evaluated for the

algorithm during cross-validation and final validation are listed in Table 5.13. In

addition to the four performance metrics discussed above, a few traditional metrics

are also evaluated for reference purposes. These metrics include Mean of Bias, Mean

Absolute Errors, Root Mean Squared Errors, Symmetric Mean Absolute Percentage

Errors, Standard Deviation of Errors and Median of absolute Errors (see Section 2.5.2
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Table 5.12: Best TSBP settings

Procedure Algorithm and Parameters

Data preparation Multi-regime data normalization with variables No.

2, 3, 4, 7, 8, 9, 11, 12, 13, 14, 15, 20 and 21

Degradation trajectory

abstraction

Kernel regression with kernel width ρ = 7

Similarity evaluation Distance definition MED-DA with spread ratioγ =

0.3

Model aggregation Kernel density estimation with adaptive selection

of bandwidth h

for definitions). It shows that the performance of the algorithm improved during final

validation over cross-validation. This can be attributed to the increased number of

training instances that expand the library of degradation patterns.

5.4 Benchmarking with the Neural Network approach

There are many different approaches to constructing Neural Network (NN) models

for RUL estimation, especially the setting of inputs and outputs for an NN. And then,

the type of NN has to be specified, such as Feed-Forward Back-Propagation NN,

Recurrent NN, Radial Basis Function Network (RBFN), and so on; then the detailed

internal structure has to be decided, including the number of layers and neurons,

transfer functions at each layer, etc.; in some cases, a certain free parameter has to

be decided too, such as the spread parameter for an RBFN.
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Table 5.13: RUL estimation performance using TSBP approach

Performance Metrics Cross-

validation

Final vali-

dation

PH: Prediction Horizon (α = 0.2, β = 0.8)

(density estimation)

100.5 104

PH*: Prediction Horizon (α = 0.2, β = 0.8)

(point estimation)

168.5 158

AP: Rate of Acpt. Pred. (tH = 104, α = 0.2) 0.6214 0.7368

RA: Relative Accuracy (tH = 80) 0.7980 0.8320

CG: Convergence (tH = 80) 0.6278 0.6167

Total: 0.6× AP + 0.3×RA+ 0.1× CG 0.6750 0.7534

MBias: Mean of Bias/Errors 2.4799 -2.0762

MAE: Mean Absolute Errors 21.0848 20.7676

RMSE: Root Mean Squared Errors 30.1945 31.9886

sMAPE: Symmetric Mean Abs. Pct. Errors 0.2302 0.2292

S: Standard Deviation of Errors 30.0956 31.9262

MAD: Median of absolute Errors 20.9622 20.7587

5.4.1 Design of NN for RUL prediction

In this case study, N inputs and one output for an NN are defined as follows:

• Inputs : N equally-spaced health indices (with a space of k cycles) in the history

up to the current time stamp, (zi−(N−1)k, zi−(N−2)k, ..., zi)

• Outputs : the current RUL, ri = tE − ti
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The original multivariate data xi has to be converted into 1-D data zi first before it

can be used as the NN inputs. In this case study, the multi-regime health assessment

method described in Section 4.4 is used to compute the health index series. The

sensors to include for analysis are those with consistent trend, i.e. sensor No. 2,

3, 4, and 11. Linear models in the form given by Eq.(4.7) are used as local health

assessment models. A few examples of the obtained 1-D health index series after

health assessment are shown in Fig. 5.8 (blue curves) The health index series will
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Figure 5.8: Health index series and the degradation trajectory (smoothed health

indices) of 12 training instances

be smoothed (Fig. 5.8, red curves) using kernel regression (with kernel width ρ = 7)
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before being used to construct the inputs for the RBFN. The number of NN inputs

is set to N = 17 and the spacing is set to k = 3.

The type of NN used here is RBFN. RBFN has one hidden layer and one output

layer. The hidden layer has a number of Radial Basis Function (RBF) neurons, which

calculate the distances between the input vector and the neurons based on RBF:

fRBF (x) = exp

(
−‖x− c‖2

2ρ2RBF

)
(5.13)

where ρRBF is the RBF spread parameter. The output layer has a linear neuron,

which calculate a weighted sum of the hidden layer outputs. Due to the inclusion of

RBF neurons, RBFN is capable of capturing the similarity between a test input and

the training inputs to make predictions; the usage of “similarity” in RBFN, of course,

is much simpler than that in the TSBP approach.

In order to train the RBNN model, the training samples has to be pre-

pared/constructed using the health index series from L training instances, with

multiple training samples generated from each instance by sliding a time window

of size k ·N over the time series:

Inputs Outputs

(z1, z1+k, ..., z1+(N−1)k) tE − t1+(N−1)k

(z2, z2+k, ..., z2+(N−1)k) tE − t2+(N−1)k

...
...

(zE−(N−1)k, zE−(N−2)k, ..., zE) 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

constructed from the lth instance

During training, the RBFN will start from a single neuron. The model Mean Squared

Error (MSE) will be computed. If MSE is greater than a specified goal, a new RBF

neuron will be added with weights equal to the input vector that produces the greatest
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error, and then the network will be retrained. This process will repeat until the goal

of MSE is reached or the maximum number of neurons is reached. In this case study,

the RBFN has difficulty to converge to a small MSE (e.g. a square of 20 cycles) due

to the big variation in the data set. Therefore, the training samples are narrowed

down to those with target RULs less than 200 cycles. And the maximum number of

neurons is set to 50 to force early stop for over-fitting prevention.

RBFN has a free-choice parameter, the RBF spread, which is optimized through

cross-validation. The final choice of RBF spread is 0.65.

5.4.2 Performance evaluation and analysis

The final settings of RBFN are summarized in Table 5.14. The RUL prediction

performance is shown in Table 5.15, including the performance from cross-validation

(using only the 150 training instances), the performance from the final validation

(using 150 training instances and 99 test instances), and the performance of TSBP in

final validation. Sample predictions for a few test instances in the validation set are

shown in Fig. 5.9. The prediction errors vs. the true RUL, regardless timestamps

and instances, are shown in Fig. 5.10. The TSBP approach has demonstrated higher

accuracy and prediction consistency than RBFN.

Table 5.14: Settings of RBF Network for RUL estimation

Smoothing kernel width ρ 7

Number of NN inputs N 13

Input construction spacing k 3

Number of RBF neurons 50

RBF spread parameter ρRBF 0.65
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Table 5.15: RUL estimation performance using RBF Network

Performance Metrics Cross val-

idation

Final vali-

dation

TSBP

Final

PH*:Prediction Horizon (α = 0.2, β = 0.8)

(point estimation)

178.5 177 158

AP: Rate of Acpt. Pred. (tH = 80, α = 0.2) 0.4286 0.4000 0.7368

RA: Relative Accuracy (tH = 80) 0.7240 0.7124 0.8320

CG: Convergence (tH = 80) 0.6406 0.6137 0.6167

Total: 0.6× AP + 0.3×RA+ 0.1× CG 0.5384 0.5151 0.7534

MBias: Mean of Bias/Errors 10.5995 6.2551 -2.0762

MAE: Mean Absolute Errors 23.7003 23.5003 20.7676

RMSE: Root Mean Squared Errors 31.9915 34.6383 31.9886

sMAPE: Symmetric Mean Abs. Pct. Errors 0.2631 0.2523 0.2292

S: Standard Deviation of Errors 30.1876 34.0742 31.9262

MAD: Median of absolute Errors 22.5228 23.0269 20.7587

A few comments on the RBFN approach are listed below:

• This RBFN approach produces only point estimation of RUL, therefore the

point-estimation based PH metric is used, which gives a much longer PH value

than a density-estimation based version.

• Predictions with exceptional large errors (e.g. over 1000) can be found

occasionally, which can be attributed to the over-fitting problem of the NN.

The performance results shown in Table 5.15 has been computed after removing

these prediction outliers.
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Figure 5.9: RUL predictions for selected instances using TSBP and RBFN method

• The performance of RBFN during final validation is worse than that during

cross validation in this case.

5.4.3 Summary

In summary, using Neural Network to learn a global model from uncleaned data

(e.g. with a mixture of diversified degradation patterns) may be difficult. The NN

model is hard to converge to a small errors with a small amount of neurons. The

NN model (with the same settings) trained from different training data set tends to

be quite different. The performance of an NN is inconsistent during training (even if
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Figure 5.10: Prediction errors vs. True RUL for the final validation set, regardless

time stamps and instances. (a) TSBP approach; (b) RBFN approach

cross-validation) and validation, which makes it hard to manage uncertainty of NN

models, and also hard to develop confidence on the use of the NN model in a real

application.

In this study, there are more training data for the final validation than the cross-

validations. The increased amount of training data makes RBFN more difficult to

reach the error objective set during cross-validation and more training data with

higher diversity have worsened the performance of the algorithm. This may be

attributed to the nature of a global modeling approach. An IBL based approaches

such as TSBP, on the contrary, may see improved performance when the training

data diversity increases.

The use of NN requires many settings and parameters being specified. Construct-

ing the inputs to NN itself has endless options, not to mention the internal structure of

NN. Therefore the performance of an NN model is highly dependent on the knowledge
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and experience of the person who designs it. The NN model presented here is by no

means optimized and can only be used as a reference.

5.5 Discussions

The turbofan engine degradation data demonstrates a number of special properties

that pose challenges to RUL modeling.

Firstly, it is known that the data set contains two fault modes, even though

they are not explicitly labeled. Global models will face difficulty in modeling such

data without first classifying the data by fault modes. The information on fault

modes, however, is not utilized while developing the TSBP model. In a TSBP model,

mixture of fault modes in the data is actually treated as an unknown factor that

influences the system’s degradation process, and is handled naturally by the internal

ensemble structure of TSBP. For a real-world system, the fault modes information is

not always available for the collected data; some minor fault mechanism may have

never be identified nor studied, and thus no diagnostic routine can be utilized to help

label the fault modes. Therefore, a mixture of fault modes in the collected data can

be pretty common in reality. This case study has been used to simulate such situation

and test the RUL modeling capability.

Secondly, due to unknown engineering variance in difference instances, the

collected data have shown quite large variance in the initial condition as well as

degradation rate. This will increase the uncertainty in the model parameters learned

from the data.

Lastly, due to unknown failure mechanism of the system (when the background

knowledge to the data is not given), failure thresholds are hard to set based on the

sensor measurements. Different instances have been claimed failure with quite large

variance in the end-life sensor readings.

110



www.manaraa.com

All these properties in the data can be observed from the normalized sensor plot

shown in Figure 5.5. As an IBL approach, TSBP can naturally accommodate a variety

of degradation patterns in the training instances when there’s not enough knowledge

or information to pre-classify them.

In this case study, run-to-failure condition data are available for the training

instances, which tells the instances’ actual life explicitly. However, run-to-failure data

for the training instances are, though desirable, not mandatory. The TSBP approach

is applicable as long as the training units’ RUL can be estimated in a certain way, for

example, through failure time distribution, heuristics, etc. The optimization method

proposed by Tian et al. [2009] provides another means to deal with training instances

that do not fail.
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6 Conclusions

6.1 Summary

The degradation process of real-world systems is affected by many factors such

as fault modes, usage patterns, initial engineering variance, etc., which may not

be identifiable in an application. On the other hand, due to imperfect condition

monitoring, certain parameters that affect the system’s behavior, such as the

operational and environmental conditions, may not be adequately measured as well.

All these unmeasured or immeasurable factors will increase the seemingly noise and

inconsistency in the collected data and pose great challenges to global models for RUL

prediction. These challenges has been addressed by the proposed TSBP method.

In TSBP, the life-time condition data from past instances of a system with known

failure time are used to extract a number of degradation patterns/trajectories through

the kernel regression method and form a library of degradation models. For a test

instance of the same type of system, similarity between it and each of the models

in the library are evaluated by computing the minimal weighted Euclidean distances

defined for two trajectories. Then a local RUL prediction for the test instance is

given based on the known failure time of each of the degradations models. Finally

the RUL probability density of the test instance can be estimated from the multiple

local predictions using the kernel density estimation method.

Considering the specialty of engineering applications, three similarity definition is

proposed in this thesis. The first definition is called Minimal Euclidean Distance with

Time Lag (MED-TL), which looks for the best similarity by shifting the condition

data in time and then computing the distance to the model trajectory. The second

definition is called Minimal Euclidean Distance with Degradation Acceleration (MED-
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DA), which allows the model trajectory to be scaled in time (either compressed

or stretched) to accommodate degradation acceleration/deceleration. The third

definition is called Minimal Euclidean Distance with Time Lag and Degradation

Acceleration (MED-TL-DA), which includes both shifting and scaling operation while

computing the distance between the trajectories.

A multi-regime data normalization method is developed to prepare data for TSBP

modeling. The variables indicating the operational conditions of the system, if any,

can be used to cluster the operation space into a number of operating regimes. Within

each regimes, the operational conditions are relative stable and the extracted features

can have comparable baseline. The features within each regime are normalized into

a common range, so that they can be merged into a new time series with the original

timestamps. The normalized features in the new time series are then weighted based

on their relevance to the system degradation, which is evaluated by the proposed

metric of Empirical Signal-Noise Ratio (eSNR). Finally the PCA method is applied

to remove correlations among the normalized, weighted features.

In the case study, TSBP demonstrates effective prediction capability for complex

system RUL estimation and noticeable improvement compared with the traditional

Neural Network based prediction method.

6.2 Contributions and broader impacts

The key contributions of this thesis are summarized below:

1. Developed an effective RUL prediction method that addresses multiple

challenges in complex system prognostics;

2. Derived three similarity metrics between degradation trajectories, which enrich

the IBL methodology in prognostics applications;

3. Developed a multi-regime data normalization method for data preprocessing,

113



www.manaraa.com

especially a variable weighting method applied as preprocessing procedure to

the regular Principal Component Analysis.

In addition, a solid case study is provided in this thesis to fully explore the strength

and weakness of the developed methodology.

The TSBP method developed in this thesis is expected to have a broad impact to

industry. TSBP can be widely applied in engineering system prognostics applications

where persistent data collection from a large number of identical machines or

equipment are performed, such as for aircraft engines, heavy-duty mining trucks,

wind farms and so on. Effective RUL predictions provided by the TSBP method will

have great impact on the reduction of unplanned downtime and cost, safety assurance,

and accomplishment of critical missions in such applications.

6.3 Comments on TSBP

The TSBP method presented in this chapter inherits the concept of IBL. It

employs a similarity definition that relies on only the degradation trajectory – in

other words, only the condition monitoring data – of the system, and thus requires

minimal insight knowledge to the system. In principle, the TSBP approach will

demonstrate its advantages when abundant historical data of similar instances are

available, though theoretically the minimal number of training instances required

is one. Therefore the TSBP approach will be more effective when persistent data

collection from a large number of identical machines or equipment are performed,

such as the application of aircraft engines, heavy-duty mining trucks, wind farms and

so on.

TSBP has the nature of ensemble models, which make the method easily adapt

to variations in the system’s degradation pattern, especially mixture degradation

patterns due to unknown factors. TSBP employs non-parametric representation of
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degradation patterns, which requires no assumptions on the shape (e.g. exponential)

of the degradation trend. TSBP makes RUL inference solely based on past cases with

failure history, and thus requires no explicit failure criteria and requires minimal prior

knowledge to the degradation mechanisms.

Although the TSBP approach does not mandate inside knowledge to the system,

it does not prevent the inclusion of knowledge to improve the performance of the

whole solution as well. Actually, the strength of an IBL approach is that it expresses

the intuition in a simple way so that additional information or knowledge to the

system can be easily incorporated. For example, the background information for the

instances may help to narrow down the search space during instance retrieval and

potentially improve the similarity evaluation accuracy. A diagnostic reasoner of the

system, as well as a well-labeled training instances, can help the algorithm to make

more focused predictions towards certain failure modes.

As an IBL approach, TSBP shares its “lazy learner” nature as well, which means

TSBP will defer most of the computational task for learning to the evaluation stage.

It is found that TSBP is very fast for model training, and there’s no convergence

issue during this stage; however, TSBP will have much higher computational load at

evaluation stage. For instance, it may take a few seconds to make one RUL prediction

on a regular mainstream PC; to generate a complete sequence of predictions at each

time stamp of a test instance (e.g. 100 predictions) will take a few minutes; to make

predictions for 100 test instances for validation purposes will take a few hours. As

comparison, a trained NN can be at least 100 times faster during model evaluation,

though the training processing of NN usually takes longer time than TSBP. The

computation load of TSBP has prevented its parameters from being fully optimized

through cross validation.
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6.4 Future work

Some future work can be expected to further explore the capability of TSBP,

improve the methodology and expand the RUL prediction framework brought forward

by this thesis:

• Study the method to organize the degradation pattern library in order to

retrieve fewer number of instances with high similarity during prediction;

• Improve the computational performance of distance evaluation of the current

TSBP method;

• Explore other options of similarity/distance definitions;

• Benchmark TSBP with more other prediction techniques, especially ensemble

techniques;

• More case studies on other engineering problems.

116



www.manaraa.com

References

A. Aamodt and E. Plaza. Case-based reasoning - foundational issues, methodological
variations, and system approaches. AI Communications, 7(1):39–59, MAR 1994.
ISSN 0921-7126.

M. Arulampalam, S. Maskell, N. Gordon, and T. Clapp. A tutorial on particle filters
for online nonlinear/non-Gaussian Bayesian tracking. IEEE Transactions on Signal
Processing, 50(2):174–188, FEB 2002. ISSN 1053-587X.

D. Banjevic and A. K. S. Jardine. Calculation of reliability function and remaining
useful life for a Markov failure time process. IMA J Management Math, 17(2):
115–130, 2006. doi: 10.1093/imaman/dpi029.

P. Baruah and R. Chinnam. HMMs for diagnostics and prognostics in machining
processes. International Journal of Production Research, 43(6):1275–1293, MAR
15 2005. ISSN 0020-7543. doi: {10.1080/00207540412331327727}.

J. Bi, K. Bennett, M. Embrechts, C. Breneman, and M. Song. Dimensionality
reduction via sparse support vector machines. J. Mach. Learn. Res., 3:1229–1243,
2003. ISSN 1532-4435.

P. Bonissone, A. Varma, and K. Aggour. A fuzzy instance-based model for
predicting expected life: A locomotive application. In Proceedings of the 2005
IEEE International Conference on Computational Intelligence for Measurement
Systems and Applications, pages 20–25, 2005. ISBN 0-7803-9025-3. IEEE
International Conference on Computational Intelligence for Measurement Systems
and Applications, Messina, ITALY, JUL 20-22, 2005.

Z. I. Botev, J. F. Grotowski, and D. P. Kroese. Kernel density estimation via diffusion.
Annals of Statistics, 2010. to be published.

G. Box, G. M. Jenkins, and G. Reinsel. Time Series Analysis: Forecasting & Control
(3rd Edition). Prentice Hall, 3rd edition, February 1994. ISBN 0130607746.

M. Carr and W. Wang. A case comparison of a proportional hazards model and
a stochastic filter for condition-based maintenance applications using oil-based
condition monitoring information. In Proceedings of the Institution of Mechanical
Engineers, Part O: Journal of Risk and Reliability, volume 222, page 4755, 2008.
doi: {10.1243/1748006XJRR76}.

S. Cheng and M. Pecht. Multivariate state estimation technique for remaining
useful life prediction of electronic products. In AAAI Fall Symposium on Artificial
Intelligence for Prognostics, pages 26–32, November 2007. Arlington, VA.

117



www.manaraa.com

R. Chinnam and P. Baruah. A neuro-fuzzy approach for estimating mean residual
life in condition-based maintenance systems. International Journal of Materials &
Product Technology, 20(1-3):166–179, 2004. ISSN 0268-1900.

R. B. Chinnam and P. Baruah. Autonomous diagnostics and prognostics in
machining processes through competitive learning-driven HMM-based clustering.
International Journal of Production Research, 47(23):6739–6758, 2009. ISSN 0020-
7543. doi: {10.1080/00207540802232930}.

W. Cleveland. Robust locally weighted regression and smoothing scatterplots. Journal
of the American Statistical Association, 74(368):829–836, 1979. ISSN 0162-1459.

D. Cox. Regression models and life-tables. Journal of the Royal Statistical Society
Series B-Statistical Methodology, 34(2):187–&, 1972. ISSN 1369-7412.

P. Craven and G. Wahba. Smoothing noisy data with spline functions - estimating
the correct degree of smoothing by the method of generalized cross-validation.
Numerische Mathematik, 31(4):377–403, 1979. ISSN 0029-599X.

M. Dong and D. He. A segmental hidden semi-Markov model (HSMM)-based
diagnostics and prognostics framework and methodology. Mechanical Systems and
Signal Processing, 21(5):2248–2266, JUL 2007. ISSN 0888-3270. doi: {10.1016/j.
ymssp.2006.10.001}.

P. Frank. Fault-diagnosis in dynamic-systems using analytical and knowledge-based
redundancy - a survey and some new results. Automatica, 26(3):459–474, MAY
1990. ISSN 0005-1098.

D. Frederick, J. DeCastro, and J. Litt. Users Guide for the Commercial Modular
Aero-Propulsion System Simulation (CMAPSS). NASA/ARL, 2007. Technical
Manual TM2007-215026.

N. Gebraeel, M. Lawley, R. Liu, and V. Parmeshwaran. Residual life predictions
from vibration-based degradation signals: A neural network approach. IEEE
Transactions on Industry Electronics, 51(3):694–700, JUN 2004. ISSN 0278-0046.
doi: {10.1109/TIE.2004.824875}.

K. Goebel, B. Saha, and S. A. A comparison of three data-driven techniques for
prognostics. In Failure prevention for system availability, 62th meeting of the MFPT
Society, page 119131, 2008. 62th meeting of the MFPT Society, Virginia Beach,
VA, MAY 06-08, 2008.

I. Guyon and A. Elisseeff. An introduction to variable and feature selection. Journal
of Machine Learning Research, 3:1157–1182, 2003.

118



www.manaraa.com

M. A. Hall. Correlation-based Feature Selection for Machine Learning. PhD
thesis, Department of Computer Science, The University of Waikato, Hamilton,
NewZealand, April 1999.

F. O. Heimes. Recurrent neural networks for remaining useful life estimation.
In Proceedings of the 2008 International Conference on Prognostics and Health
Management, pages 1–6, oct. 2008. International Conference On Prognostics And
Health Management, Denver, CO, Oct 06-09, 2008.

R. Huang, L. Xi, X. Li, C. R. Liu, H. Qiu, and J. Lee. Residual life predictions for
ball bearings based on self-organizing map and back propagation neural network
methods. Mechanical Systems and Signal Processing, 21(1):193–207, JAN 2007.
ISSN 0888-3270. doi: {10.1016/j.ymssp.2005.11.008}.

J. Jang. ANFIS: Adaptive-Network-Based Fuzzy Inference System. IEEE
Transactions on Systems, Man, and Cybernetics, 23:665–684, 1993.

A. Jardine, P. Anderso, and D. Mann. Application of the weibull proportional
hazards model to aircraft and marine engine failure data. Quality and Reliability
Engineering International, 3(2):77–82, DEC 1987. doi: {10.1002/qre.4680030204}.

A. K. S. Jardine, D. Lin, and D. Banjevic. A review on machinery diagnostics
and prognostics implementing condition-based maintenance. Mechanical Systems
and Signal Processing, 20(7):1483–1510, OCT 2006. ISSN 0888-3270. doi:
{10.1016/j.ymssp.2005.09.012}.

I. Jolliffe. Pincipal Component Analysis. New York: Springer, 2002.

R. Kohavi and G. H. John. Wrappers for feature subset selection. Artificial
Intelligence, 97(1-2):273 – 324, 1997. ISSN 0004-3702. doi: 10.1016/S0004-3702(97)
00043-X.

T. Kohonen. The self-organizing map. Proceedings of the IEEE, 78(9):1464–1480,
August 2002. doi: 10.1109/5.58325.

I. J. Leontaritis and S. A. Billings. Input-output parametric models for non-linear
systems part i: deterministic non-linear systems. International Journal of Control,
41(2):303–328, 1985. doi: 10.1080/0020718508961129.

R. Lewis and V. Torczon. A globally convergent augmented Lagrangian pattern search
algorithm for optimization with general constraints and simple bounds. SIAM
Journal on Optimization, 12(4):1075–1089, APR 26 2002. ISSN 1052-6234.

Y. Li, S. Billington, C. Zhang, T. Kurfess, S. Danyluk, and S. Liang. Adaptive
prognostics for rolling element bearing condition. Mechanical Systems and Signal
Processing, 13(1):103–113, JAN 1999. ISSN 0888-3270.

119



www.manaraa.com

Y. Li, T. Kurfess, and S. Liang. Stochastic prognostics for rolling element bearings.
Mechanical Systems and Signal Processing, 14(5):747–762, SEP 2000. ISSN 0888-
3270.

L. Liao and J. Lee. A novel method for machine performance degradation assessment
based on fixed cycle features test. Journal of Sound and Vibration, 326(3-5):894–
908, OCT 9 2009. ISSN 0022-460X. doi: {10.1016/j.jsv.2009.05.005}.

J. Liu, D. Djurdjanovic, J. Ni, N. Casoetto, and J. Lee. Similarity based method
for manufacturing process performance prediction and diagnosis. Computers in
Industry, 58(6):558–566, AUG 2007. ISSN 0166-3615. doi: {10.1016/j.compind.
2006.12.004}.

J. MacGregor and T. Kourti. Statistical process-control of multivariate processes.
Control Engineering Practice, 3(3):403–414, March 1995. ISSN 0967-0661. IFAC
Symposium on Advanced Control of Chemical Processes (ADCHEM 94), KYOTO,
JAPAN, MAY 25-27, 1994.

S. Marble and B. P. Morton. Predicting the remaining life of propulsion system
bearings. In 2006 IEEE Aerospace Conference, Vols 1-9, IEEE Aerospace
Conference Proceedings, pages 4091–4098, 2006. ISBN 0-7803-9545-X. 2006 IEEE
Aerospace Conference, Big Sky, MT, MAR 04-11, 2006.

G. Mclachlan and D. Peel. Finite Mixture Models. Wiley Series in Probability and
Statistics. Wiley-Interscience, October 2000. ISBN 0471006262.

T. M. Mitchell. Machine Learning. McGraw-Hill Science/Engineering/Math, 1
edition, March 1997. ISBN 0070428077.

R. M. Neal. Bayesian Learning for Neural Networks. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 1996. ISBN 0387947248.

M. E. Orchard and G. J. Vachtsevanos. A particle-filtering approach for on-line
fault diagnosis and failure prognosis. Transactions of the Institute of Measurement
and Control, 31(3-4):221–246, JUN-AUG 2009. ISSN 0142-3312. doi: {10.1177/
0142331208092026}.

L. R. Rabiner. A tutorial on hidden markov models and selected applications in
speech recognition. In Proceedings of the IEEE, pages 257–286, 1989.

C. Rasmussen. Gaussian processes in machine learning. In Bousquet, O and
VonLuxburg, U and Ratsch, G, editor, Advanced Lectures on Machine Learning,
volume 3176 of Lecture Notes in Artificial Intelligence, pages 63–71, 2004. ISBN
3-540-23122-6. Machine Learning Summer School Conference 2003, Tubingen,
GERMANY, AUG, 2003.

120



www.manaraa.com

A. Ray and S. Tangirala. Stochastic modeling of fatigue crack dynamics for on-line
failure prognostics. IEEE Transactions on Control Systems Technology, 4(4):443–
451, JUL 1996. ISSN 1063-6536.

S. J. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice
Hall, 2 edition, 2003.

B. Saha, K. Goebel, and J. Christophersen. Comparison of prognostic algorithms
for estimating remaining useful life of batteries. Transactions of the Institute of
Measurement and Control, 31(3-4):293–308, JUN-AUG 2009. ISSN 0142-3312. doi:
{10.1177/0142331208092030}.

A. Saxena and K. Goebe. C-MAPSS Data Set, NASA Ames Prognostics Data
Repository. http://ti.arc.nasa.gov/project/prognostic-data-repository, 2008.

A. Saxena, B. Wu, and G. Vachtsevanos. Integrated diagnosis and prognosis
architecture for fleet vehicles using dynamic case-based reasoning. In Autotestcon,
2005. IEEE, pages 96 – 102, sept. 2005. doi: 10.1109/AUTEST.2005.1609109.

A. Saxena, J. Celaya, E. Balaban, K. Goebel, B. Saha, S. Saha, and M. Schwabacher.
Metrics for evaluating performance of prognostic techniques. In Proceedings of
the 2008 International Conference on Prognostics and Health Management, pages
1–17, oct. 2008a. doi: 10.1109/PHM.2008.4711436. International Conference On
Prognostics And Health Management, Denver, CO, Oct 06-09, 2008.

A. Saxena, K. Goebel, D. Simon, and N. Eklund. Damage propagation modeling for
aircraft engine run-to-failure simulation. In Proceedings of the 2008 International
Conference on Prognostics and Health Management, pages 1–9, oct. 2008b. doi:
10.1109/PHM.2008.4711414. International Conference On Prognostics And Health
Management, Denver, CO, Oct 06-09, 2008.

A. Saxena, J. Celaya, B. Saha, S. Saha, and K. Goebel. Metrics for offline evaluation
of prognostic performance. International Journal of Prognostics and Health Man-
agement, April 2010. [Online] http://www.phmsociety.org/ijphm/2010/metrics-
for-offline-evaluation-of-prognostic-performance.

M. Schwabacher and K. Goebel. A survey of artificial intelligence for prognostics. In
AAAI Fall Symposium, pages 107–114, sept. 2007. Arlington, VA.

S. J. Sheather and M. C. Jones. A reliable data-based bandwidth selection method
for kernel density estimation. Journal of the Royal Statistical Society. Series B
(Methodological), 53(3):683–690, 1991. ISSN 00359246.

P. SMYTH. Hidden markov-models for fault-detection in dynamic-systems. Pattern
Recognition, 27(1):149–164, JAN 1994. ISSN 0031-3203.

121



www.manaraa.com

M. Sugeno and T. Yasukawa. A fuzzy-logic-based approach to qualitative modeling.
Fuzzy Systems, IEEE Transactions on, 1(1):7–31, February 1993. doi: 10.1109/
TFUZZ.1993.390281.

T. Takagi and M. Sugeno. Fuzzy identification of systems and its applications to
modeling and control. IEEE transactions on systems, man and cybernetics, 15(1):
116–132, 1985.

Z. Tian and M. J. Zuo. Health Condition Prognostics of Gears Using a Recurrent
Neural Network Approach. In Annual Reliability and Maintainability Symposium,
2009 Proceedings, Reliability and Maintainability Symposium, pages 461–466, 2009.
ISBN 978-1-4244-2508-2. 55th Annual Reliability & Maintainability Symposium,
Ft Worth, TX, JAN 26-29, 2009.

Z. Tian, L. Wong, and N. Safaei. A neural network approach for remaining useful
life prediction utilizing both failure and suspension histories. Mechanical Systems
and Signal Processing, In Press, Corrected Proof:–, 2009. ISSN 0888-3270. doi:
DOI:10.1016/j.ymssp.2009.11.005.

M. Tipping. Sparse Bayesian learning and the relevance vector machine. Journal of
Machine Learning Research, 1(3):211–244, SUM 2001. ISSN 1532-4435.

V. Torczon. On the convergence of pattern search algorithms. SIAM Journal on
Optimization, 7(1):1–25, FEB 1997. ISSN 1052-6234.

P. Tse and D. Atherton. Prediction of machine deterioration using vibration based
fault trends and recurrent neural networks. Journal of Vibration and Acoustics-
Transactions of the ASME, 121(3):355–362, JUL 1999. ISSN 1048-9002.

G. Vachtsevanos, F. LEWIS, M. Roemer, and A. Hess. Intelligent fault diagnosis and
prognosis for engineering systems. John Wiley & Sons, Inc., 1 edition, 2006.

P. Vlok, J. Coetzee, D. Banjevic, A. Jardine, and V. Makis. Optimal component
replacement decisions using vibration monitoring and the proportional-hazards
model. Journal of the Operational Research Society, 53(2):193–202, FEB 2002.
ISSN 0160-5682.

P. Vlok, M. Wnek, and M. Zygmunt. Utilising statistical residual life estimates of
bearings to quantify the influence of preventive maintenance actions. Mechanical
Systems and Signal Processing, 18(4):833–847, JUL 2004. ISSN 0888-3270. doi:
{10.1016/j.ymssp.2003.09.003}.

A. Wald. Sequential tests of statistical hypotheses. The Annals of Mathematical
Statistics, 16(2):117–186, 1945. ISSN 00034851.

122



www.manaraa.com

P. Wang and G. Vachtsevanos. Fault prognostics using dynamic wavelet neural
networks. AI EDAM-Artificial Intelligence for Engineering Design Analysis and
Manufacturing, 15(4):349–365, SEP 2001. ISSN 0890-0604.

T. Wang, J. Yu, D. Siegel, and J. Lee. A similarity-based prognostics approach for
remaining useful life estimation of engineered systems. In Proceedings of the 2008
International Conference on Prognostics and Health Management, pages 1–6, oct.
2008. doi: {10.1109/PHM.2008.4711421}. International Conference On Prognostics
And Health Management, Denver, CO, Oct 06-09, 2008.

W. Wang. A model to predict the residual life of rolling element bearings given
monitored condition information to date. IMA J Management Math, 13(1):3–16,
2002. doi: 10.1093/imaman/13.1.3.

W. Wang and A. Christer. Towards a general condition based maintenance model for
a stochastic dynamic system. Journal of the Operational Research Society, 51(2):
145–155, FEB 2000. ISSN 0160-5682.

W. Wang, P. Scarf, and M. Smith. On the application of a model of condition-based
maintenance. Journal of the Operational Research Society, 51(11):1218–1227, NOV
2000. ISSN 0160-5682.

W. Wang, M. Golnaraghi, and F. Ismail. Prognosis of machine health condition using
neuro-fuzzy systems. Mechanical Systems and Signal Processing, 18(4):813–831,
JUL 2004. ISSN 0888-3270. doi: {10.1016/S0888-3270(03)00079-7}.

S. Wegerich. Similarity based modeling of time synchronous averaged vibration signals
for machinery health monitoring. In 2004 IEEE Aerospace Conference Proceedings,
Vols 1-6, IEEE Aerospace Conference Proceedings, pages 3654–3662, 2004. ISBN
0-7803-8155-6. IEEE Aerospace Conference, Big Sky, MT, MAR 06-13, 2004.

G. Welch and G. Bishop. An introduction to the kalman filter. Technical report,
University of North Carolina at Chapel Hill, Chapel Hill, NC, USA, 1995.

G. A. Whitmore. First-passage-time models for duration data: Regression structures
and competing risks. Journal of the Royal Statistical Society. Series D (The
Statistician), 35(2):207–219, 1986. ISSN 00390526.

C. Williams. Prediction with Gaussian processes: From linear regression to linear
prediction and beyond. In Jordan, MI, editor, Learning in Graphical Models,
volume 89 of NATO Advanced Science Institutes Series, Series D, Behavioral and
Social Sciences, pages 599–621, 1998. ISBN 0-7923-5017-0. NATO Advanced Study
Institute on Learning in Graphical Models, ERICE, ITALY, SEP 27-OCT 07, 1996.

123



www.manaraa.com

F. Xue, P. Bonissone, A. Varma, W. Yan, N. Eklund, and K. Goebel. An
Instance-Based Method for Remaining Useful Life Estimation for Aircraft Engines.
Journal of Failure Analysis and Prevention, 8(2):199–206, 2008. doi: {10.1007/
s11668-008-9118-9}.

R. Yam, P. Tse, L. Li, and P. Tu. Intelligent predictive decision support system for
condition-based maintenance. International Journal of Advanced Manufacturing
Technology, 17(5):383–391, 2001. ISSN 0268-3768.

J. Yan, M. Koc, and J. Lee. A prognostic algorithm for machine performance
assessment and its application. Production Planning & Control, 15(8):796–801,
DEC 2004. ISSN 0953-7287. doi: {10.1080/09537280412331309208}.

E. Zio and F. D. Maio. A data-driven fuzzy approach for predicting the remaining
useful life in dynamic failure scenarios of a nuclear system. Reliability Engineering
& System Safety, 95(1):49 – 57, 2010. ISSN 0951-8320. doi: DOI:10.1016/j.ress.
2009.08.001.

124



www.manaraa.com

Appendix: PCA with Karhunen-Loéve

transform

Let X = (x1,x2, ...,xL) be a matrix consisting of L samples for the N-dimensional

variable x, with each column vector being one sample. The empirical mean of x is

given as

u = (μ1, μ2, ..., μN)
T

μn =
1

L

L∑
l=1

X[n, l] (A.1)

By removing the empirical mean, we have

Y = X − uh (A.2)

where h is a 1×N vector of all 1’s.

Then the empirical covariance matrix of Y is computed:

C =
1

L− 1
Y · Y T (A.3)

The N × N empirical covariance C can be decomposed by the eigenvalues and

eigenvectors

C = V · Λ · V T (A.4)

where Λ is an N × N diagonal matrix of the eigenvalues of C, with Λ[n, n] = λn;

and V = (v1, ...,vN) is an N × N matrix of the eigenvectors, with each column

vector vn being an eigenvector corresponding to the eigenvalue λn. In matrix C, the

eigenvectors λn is sorted in ascending order such that λn >= λn+1 for n = 1, ..., N−1.
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Next, a subset of the eigenvectors will be selected. The first M eigenvectors are

selected so that the first M eigenvalues sum up no less than a certain percentage, say

90%, of the total sum of all the eignenvalues:

M = min
m=1,...,N

m

m∑
n=1

λn ≥ 90%×
N∑

n=1

λn (A.5)

The selected M eigenvectors will form an N ×M matrix

VM = (v1,v2, ...,vM) (A.6)

Now, the samples in X can be transformed into the principal component domain

with transformation

Z = V T
M · Y = V T

M · (X − uh) (A.7)

where Z is an M ×L matrix with each column being one principal component vector

for the corresponding column vector in X.

For a new sample of x that is not from samples in X, it can also be transformed

using the parameters established from X:

z = V T
M · (x− u) (A.8)

The resultant principal component vector z is M-dimensional.
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